\(x^4+y^4\ge\frac{\left(x^2+y^2\right)^2}{2}\ge\frac{\left[\frac{\left(x+y\right)^2}{2}\right]^2}{2}=\frac{\left(x+y\right)^4}{8}\)(bđt Cauchy - Schwarz)
\(x^4+y^4\ge\frac{\left(x^2+y^2\right)^2}{2}\ge\frac{\left[\frac{\left(x+y\right)^2}{2}\right]^2}{2}=\frac{\left(x+y\right)^4}{8}\)(bđt Cauchy - Schwarz)
Chứng minh các bất đẳng thức sau với x, y, z > 0
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)
c) \(x^4+y^4\ge\dfrac{\left(x+y\right)^4}{8}\)
e) \(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\)
f) \(x^3+y^3+z^3\ge3xyz\)
Cho x,y,z>0. Chứng minh rằng:
\(\left(\frac{x}{x+y}\right)^2+\left(\frac{y}{y+z}\right)^2+\left(\frac{z}{z+x}\right)^2\ge\frac{3}{4}\)
\(x^8+y^8\ge x^2.y^2.\left(x^4+y^4\right)\)
Chứng minh
ai biết giúp mình với mai ktra rồi .Chứng minh với mọi x, y:\(x^4+y^4\ge x^3y+xy^3\)
cho x,y > 0. Chứng minh : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
cho x2+y2=1.Chứng minh: \(\left(x+y\right)^2\le2\)
1, Cho x.y=1; x > y. Chứng minh rằng:
\(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
2, CMR : \(\left(a^{10}+b^{10}\right).\left(a^2+b^2\right)\ge\left(a^8+b^8\right).\left(a^4+b^4\right)\)với mọi a,b
Giúp mình nha
Chứng minh \(x^3+y^3\ge\frac{\left(x+y\right)^3}{4}\)với (x,y >0 )
1.Chứng minh \(\frac{x^2+y^2-z^2-2zt+2xy-t^2}{x+y-z-t}=\frac{x^2-y^2+z^2}{x-y+z-t}-2zt+2xz-t^2\)
2.Rút gọn X= \(\frac{\left(2^4+4\right)\left(6^4+4\right)\left(10^4+4\right)\left(14^4+4\right)}{\left(4^4+4\right)\left(8^4+4\right)\left(12^4+4\right)\left(16^4+4\right)}\)
Cho x;y>0 thỏa x+y=1. Tìm Min A=16(x4+y4)
Ta có: \(A=16\left(x^4+y^4\right)\ge\frac{16.\left(x^2+y^2\right)^2}{2}=8\left(x^2+y^2\right)^2\)
\(\ge8.\left[\frac{\left(x+y\right)^2}{2}\right]^2=\frac{8.\left(x+y\right)^4}{2}=2\left(x+y\right)^4=1\)
Dấu = khi \(x=y=\frac{1}{2}\)
Chứng minh BĐT\(4\left(x^3-y^3\right)\ge\left(x-y\right)^3\) với x,y thuộc R