sử dụng \((t+1/t)^2 = t^2 + 1/t^2 +2\)
sử dụng \((t+1/t)^2 = t^2 + 1/t^2 +2\)
CMR với 2 số thực a,b bất kì ta luôn có \(\left(\frac{a+b}{2}\right)^2\ge ab\)
Dấu đẳng thức xảy ra khi nào?
Cho các số thực dương a,b,c thỏa mãn abc =1 . Chứng minh rằng \(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\ge\frac{1}{a+b+c}\)
Đẳng thức xảy ra khi nào ?
CMR với mọi số thực dương a, b, c bất đẳng thức sau luôn đúng:
\(\frac{\left(b+c-a\right)^2}{\left(b+c\right)^2+a^2}+\frac{\left(c+a-b\right)^2}{\left(c+a\right)^2+b^2}+\frac{\left(a+b-c\right)^2}{\left(a+b\right)^2+c^2}\ge\frac{3}{5}\)
Chứng minh bất đẳng thức Cauchy-Schwarz với bộ 3 số
\(\frac{a^2}{b}+\frac{c^2}{d}+\frac{t^2}{k}\ge\frac{\left(a+c+t\right)^2}{b+d+k}\left(a,b,c,d,t,k>0\right)\)
Nếu làm được thì số like nhận được sẽ không hề nhỏ ^^
Cho số nguyên dương n. Chứng minh rằng với mọi số thực dương x, ta có bất đẳng thức:
\(\frac{x^n\left(x^{x+1}+1\right)}{x^n+1}\le\left(\frac{x+1}{2}\right)^{2n+1}\)
Cho 2 số a,b không âm . Chứng minh:
\(\frac{a+b}{2}\ge\sqrt{ab}\) ( Bất đẳng thức Cô-si cho hai số không âm)
Dấu đẳng thức xảy ra khi nào?
a) Chứng minh với mọi số thực a,b,c a cs \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)
b) Cho 3 số dương x,y,z thỏa mãn điều kiện x+y+z=3/4. Chứng minh:
\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+zx\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge9\)
Đẳng thức xảy ra khi nào?
Áp dụng bất đẳng thức bunhiacopxki ta có
\(\left(a+b+c\right)^2\ge\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge9\Rightarrow a+b+c\ge3\)
Áp dụng bất đẳng thức cauchy-schwarz ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\Rightarrow P\ge2\left(a+b+c\right)+\frac{9}{a+b+c}=a+b+c+\frac{9}{a+b+c}+a+b+c\)
Áp dụng bất đẳng thức cosi ta có \(a+b+c+\frac{9}{a+b+c}\ge2\sqrt{\frac{\left(a+b+c\right).9}{a+b+c}}=2\sqrt{9}=6\)
Lại có \(a+b+c\ge3\) (chứng minh trên)
\(\Rightarrow P\ge6+3=9\)
Vậy giá trị nhỏ nhất của P là 9. Dấu bằng xảy ra khi a=b=c=1
Cho 3 số thực \(a,b,c\ge0\). Chứng minh bất đẳng thức sau đây:
\(\frac{1}{\sqrt{1+a^2}}+\frac{1}{\sqrt{1+b^2}}\ge\frac{2}{\sqrt{1+\left(\frac{a+b}{2}\right)^2}}\)