Hình như đề phải là : Cm tam giác có 1 cạnh là đ.kính của đường tròn ngoại tiếp tam giác đó là tam giác vuông.
Nếu vậy thì cm như sau :
Gọi đỉnh đối diện với góc đó có số đo là x
Ta có x=90độ vì là góc nt chắn nửa đ.tr
=> Đó là tam giác vuông.
Hình như đề phải là : Cm tam giác có 1 cạnh là đ.kính của đường tròn ngoại tiếp tam giác đó là tam giác vuông.
Nếu vậy thì cm như sau :
Gọi đỉnh đối diện với góc đó có số đo là x
Ta có x=90độ vì là góc nt chắn nửa đ.tr
=> Đó là tam giác vuông.
Cho tam giác nhọn DEF(DE<DF)nội tiếp trong đường tròn(O;R)ba đường cao DK,EM,FN cắt nhau tại H a)Chứng minh DMHN,DMKE là các tứ giác nội tiếp b)Vẽ đường kính DS của đường tròn O.Chứng minh tam giác DFK đồng dạng với tam giác DSE
c)chứng minh OF vuông góc với KM
Giúp mk với sắp kt rùi:((
Cho tam giác ABC nhọn (AC < AB) nội tiếp đường tròn O đường kính AD. Đường cao CF và BG cắt nhau tại H kẻ OI vuông BC
a) Chứng minh tứ giác CFBD nội tiếp đường tròn
b)chứng minh tam giác ACD đồng dạng tam giác CFB
c)chứng minh tứ giác CHBD là hình bình hành và CD.CG=BD.BF
d)chứng minh I, H, D thẳng hàng
cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi I,K tương ứng là tâm các đường tròn nội tiếp tam giác ABH và tam giác ACH
1/Chứng minh tam giác ABC đồng dạng với tam giác HIK
2/ Đường thẳng IK cắt AB,AC lần lượt tại M,N
a/ Chứng minh tứ giác HNCK nội tiếp trong một đường tròn
b/ Chứng minh AM=AN
C/ Chứng minh S'<=1/2S trong đó S,S' lần lượt là diện tích tam giác ABC và tam giác AMN
cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi I,K tương ứng là tâm các đường tròn nội tiếp tam giác ABH và tam giác ACH
1/Chứng minh tam giác ABC đồng dạng với tam giác HIK
2/ Đường thẳng IK cắt AB,AC lần lượt tại M,N
a/ Chứng minh tứ giác HNCK nội tiếp trong một đường tròn
b/ Chứng minh AM=AN
C/ Chứng minh S'<=1/2S trong đó S,S' lần lượt là diện tích tam giác ABC và tam giác AMN
Cho tam giác ABC vuông ở đỉnh A. Trên cạnh AC lấy điểm M (khác với A và C). Vẽ đường tròn (O) đường kính MC. Gọi N là giao điểm thứ 2 của cạnh BC với đường tròn (O). Nối BM và kéo dài, cắt đường tròn (O) tại điểm thứ hai là P. 1) Chứng minh rằng tứ giác AMNB là tứ giác nội tiếp. 2) Chứng minh rằng hai tam giác ABP và MNP đòng dạng. 3) Đường thẳng AP cắt đường tòn (O) tại điểm thứ 2 là D (khác P). Đường thẳng ND cắt các đường thẳng AC và PC lần lượt tại E và G. Chứng minh rằng CM.CE = CP.CG
Cho tứ giác ABCD nội tiếp đường tròn (O; R). Gọi I là giao điểm AC và BD. Kẻ IH vuông góc với AB; IK vuông góc với AD ( H ∈ A B ; K ∈ A D ).
a) Chứng minh tứ giác AHIK nội tiếp đường tròn.
b) Chứng minh rằng IA.IC = IB.ID.
c) Chứng minh rằng tam giác HIK và tam giác BCD đồng dạng.
d) Gọi S là diện tích tam giác ABD, S’ là diện tích tam giác HIK. Chứng minh rằng: S ' S ≤ H K 2 4. A I 2
Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Gọi H là giao điểm của ba đường cao AD, BE, CF của tam giác ABC.
1. Chứng minh rằng AEHF và AEDB là các tứ giác nội tiếp đường tròn.
2. Vẽ đường kính AK của đường tròn (O). Chứng minh tam giác ABD và tam giác AKC đồng dạng với nhau.
3. Chứng minh rằng OC vuông góc với DE.
Cho tam giác ABC vuông tại A nội tiếp trong nửa đường tròn (O), đường cao AH. Gọi d và d' lần lượt là hai tiếp tuyến của nửa đường tròn (O) tại B và C. Một điểm M thay đổi trên nửa đường tròn (O) (M khác B và C); đường thẳng qua M vuông góc với MH lần lượt cắt d và d' tại E và F.
a) Chứng minh HE vuông góc với HF.
b) Gọi S là diện tích tam giác EHF. Chứng minh \(S\ge AH^2\)
Giups mk vs, tks nhìu.
Cho tam giác ABC vuông tại A, đường cao AH. Gọi I, J, K lần lượt là tâm đường tròn nội tiếp của tam giác ABC, tam giác AHB, tam giác AHC. Chứng minh AI vuông góc JK.