tham khảo link này nha bn !
https://olm.vn/hoi-dap/detail/227300683311.html
tham khảo link này nha bn !
https://olm.vn/hoi-dap/detail/227300683311.html
Chứng minh BPT:\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\ge\frac{2\sqrt{2}}{^{\sqrt{a^2+b^2}}}\)
Bài 1:
Với a, b, c là các số thực dương, chứng minh rằng: \(\frac{1}{a\sqrt{3a+2b}}+\frac{1}{b\sqrt{3b+2c}}+\frac{1}{c\sqrt{3c+2a}}\ge\frac{3}{\sqrt{5abc}}\)
Bài 2:
Với x, y là các số thực dương, tìm giá trị nhỏ nhất của \(G=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
Bài 3:
Với a, b, c là các số thực dương, chứng minh rằng: \(\sqrt{\frac{a+b}{c}}+\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}\ge2\left(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\right)\)
Bài 4:
Với a, b, c là các số thực dương thỏa mãn abc = 1, chứng minh rằng: \(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\ge\frac{3}{2}\)
Ai nhanh và đúng, mình sẽ đánh dấu và thêm bạn bè nhé. Thanks. Làm ơn giúp mình !!! PLEASE!!!
cho a , b , c là các số thực dương . Chứng minh rằng :
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{1}{\sqrt{2}}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)
Đẳng thức xảy ra khi nào ?
nhờ các bạn nhé mik tick cho ^^
a, b, c > 0. CM:
a)\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)
b)\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2+b^2-ab}+\sqrt{b^2+c^2-bc}+\sqrt{c^2+a^2-ac}\)
chứng minh bất đẳng thức bằng phương pháp biến đổi tương đương:
1) cho a,b>0 chứng minh \(\frac{a}{\sqrt{b}}-\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
2) cho \(a\ge b\ge1\)chứng minh \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
3) \(\frac{a^2}{4}-a\left(b-c\right)+\left(b-c\right)^2\ge0\)
4)chứng minh nếu \(a+b\ge1\) thì \(a^3+b^3\ge\frac{1}{4}\)
Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!
Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).
Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:
\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).
Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).
Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng:
a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).
b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).
c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).
Bài 5: Cho a,b,c >0. Chứng minh rằng:
\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).
Không dùng AM-GM, hãy chứng minh:\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\) với a, b, c >0
SS là một cách. Cách khác:
Áp dụng bổ đề (Link: https://artofproblemsolving.com/community/c1101515h2076318_lemma_by_vo_quoc_ba_can) với \(x=\sqrt{\frac{a}{b}};y=\sqrt{\frac{b}{c}};z=\sqrt{\frac{c}{a}}\) , có:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{3}{2}\left[\Sigma\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\right)\right]-6\)
Sau đó chứng minh: \(\frac{3}{2}\left[\Sigma\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\right)\right]-6\ge3\)
Hoán vị thành đối xứng. SOS nhẹ nhàng.
Chứng minh:\(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}\ge a\sqrt{b}+b\sqrt{a}\)
(SỬ dụng BĐT Cosy để giải)
1, Cho x+y=2 Chứng minh x4+y4\(\ge2\)
2,Với mọi a,b Chứng minh a4+ b4\(\ge a^3b+ab^3\)
3, Cho a>0 , b>0. Chứng minh \(\frac{a}{\sqrt{b}}-\sqrt{a}\ge\sqrt{b}-\frac{b}{\sqrt{a}}\)
4, Chứng minh: x4+y4\(\le\frac{x^6}{y^2}+\frac{y^6}{x^2}\)với xva2 y khác 0.