=>a+b-2căn ab<a-b
=>-2căn ab<0
=>căn ab>0(luôn đúng)
=>a+b-2căn ab<a-b
=>-2căn ab<0
=>căn ab>0(luôn đúng)
chứng minh bất phương trình:
a) \(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)
b) \(\sqrt{a}+\sqrt{b}< hoặc=\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\)
với a>0, b>0
Với a ≥ 0 và b ≥ 0, chứng minh \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
chứng minh rằng ,với a>b>0 thì \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)
Chứng minh rằng: Với a>b>0 thì \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)
CHỨNG MINH
a) \(\frac{\left(\sqrt{a}+1\right)^2-4\sqrt{a}}{\sqrt{a}-1}+\frac{a+\sqrt{a}}{\sqrt{a}}=2\sqrt{a}\) \(\left(a>0;a\ne1\right)\)
b) \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\sqrt{xy}\) \(\left(x\ge0;y\ge0\right)\)
c) \(\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}:\frac{a-b}{\sqrt{a}-\sqrt{b}}=1\) \(\left(a>0;b>0;a\ne b\right)\)
d) \(\left[\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\right]:\sqrt{b}=2\) \(\left(a>0;b>0\right)\)
Giúp mình với, cảm ơn mn <3
a. So sánh \(\sqrt{25-16}\) và \(\sqrt{25}-\sqrt{16};\)
b. Chứng minh rằng, với a > b > 0 thì \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}.\)
Chứng minh rằng nếu a,b là các số nguyên không âm và \(a^2>b\) thì
\(\sqrt{a\pm b}=\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}\pm\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}\)
CMR: a>b>0 thì \(\sqrt{a}\)-\(\sqrt{b}\)<\(\sqrt{a-b}\)
Với \(a\ge0;b\ge0\), chứng minh :
\(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
1. a) so sánh \(\sqrt{25-16}\) và \(\sqrt{25}-\sqrt{16}\) (2 cách)
b) CMR, với a > b > 0 thì \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\) (2 cách)
2. a) Cho a,b \(\ge\) 0. C/m: \(\dfrac{a+b}{2}\ge\sqrt{ab}\)
b) Cho x,y,z > 0 thì \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)
3. Tìm x biết
a) \(\sqrt{x-4}=a\left(a\in R\right)\)
b) \(\sqrt{x+4}=x+2\)