Lời giải:
Sửa đề: \(\sqrt{a\pm \sqrt{b}}=\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\pm \sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)
Xét
\(B=\sqrt{\frac{a+\sqrt{a^2-b}}{2}}+\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)
\(B^2=\frac{a+\sqrt{a^2-b}}{2}+\frac{a-\sqrt{a^2-b}}{2}+2\sqrt{\frac{a+\sqrt{a^2-b}}{2}.\frac{a-\sqrt{a^2-b}}{2}}\)
\(=a+2\sqrt{\frac{a^2-(a^2-b)}{4}}=a+\sqrt{b}\)
\(\Rightarrow B=\sqrt{a+\sqrt{b}}\) (do B không âm.)
Hoàn toàn tt, \(\sqrt{\frac{a+\sqrt{a^2-b}}{2}}-\sqrt{\frac{a-\sqrt{a^2-b}}{2}}=\sqrt{a-\sqrt{b}}\)
Đúng 0
Bình luận (0)