Bài 4: Liên hệ giữa phép chia và phép khai phương

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thái Viết Nam

Chứng minh rằng nếu a,b là các số nguyên không âm và \(a^2>b\) thì

\(\sqrt{a\pm b}=\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}\pm\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}\)

Akai Haruma
13 tháng 9 2018 lúc 10:09

Lời giải:

Sửa đề: \(\sqrt{a\pm \sqrt{b}}=\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\pm \sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)


Xét

\(B=\sqrt{\frac{a+\sqrt{a^2-b}}{2}}+\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)

\(B^2=\frac{a+\sqrt{a^2-b}}{2}+\frac{a-\sqrt{a^2-b}}{2}+2\sqrt{\frac{a+\sqrt{a^2-b}}{2}.\frac{a-\sqrt{a^2-b}}{2}}\)

\(=a+2\sqrt{\frac{a^2-(a^2-b)}{4}}=a+\sqrt{b}\)

\(\Rightarrow B=\sqrt{a+\sqrt{b}}\) (do B không âm.)

Hoàn toàn tt, \(\sqrt{\frac{a+\sqrt{a^2-b}}{2}}-\sqrt{\frac{a-\sqrt{a^2-b}}{2}}=\sqrt{a-\sqrt{b}}\)