Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyen Tran Tuan Hung

  chứng minh rằng:nếu ƯCLN(n,6)=1 thì n2-1 chia hết cho 24

Cô Hoàng Huyền
21 tháng 11 2017 lúc 15:10

Do UCLN(n,6) = 1 nên n không chia hết cho 2 và 3.

n không chia hết cho 2 nên n phải là số lẻ, n không chia hết cho 3 nên n chỉ có thể có dạng 3k + 1 hoặc 3k + 2

Nếu n = 3k + 1 thì k phải là số chẵn. Đặt k = 2j, ta có n = 3.2j + 1 = 6j + 1

Khi đó \(n^2-1=\left(6j+1\right)^2-1=36j^2+12j=12j\left(3j+1\right)\)

Nếu j chẵn, \(j=2t\Rightarrow n^2-1=12.2t\left(6t+1\right)=24t\left(6t+1\right)⋮24\)

Nếu j lẻ, \(j=2t+1\Rightarrow n^2-1=12.\left(2t+1\right)\left(6t+4\right)=24\left(2t+1\right)\left(3t+2\right)⋮24\)

Vậy \(n^2-1⋮24\)

Nếu \(n=3k+2\) thì k là số lẻ. Đặt \(k=2j+1\Rightarrow n=3\left(2j+1\right)+2=6j+5\)

\(n^2-1=\left(6j+5\right)^2-1=36j^2+60j+24=12j\left(3j+5\right)+24\)

Nếu j chẵn, \(j=2t\Rightarrow n^2-1=12.2t\left(6t+5\right)=24t\left(6t+5\right)⋮24\)

Nếu j lẻ, \(j=2t+1\Rightarrow n^2-1=12.\left(2t+1\right)\left(6t+8\right)=24\left(2t+1\right)\left(3t+4\right)⋮24\)

Vậy \(n^2-1⋮24\)

Tóm lại , khi UCLN(n ; 6) = 1 thì \(n^2-1⋮6\)


Các câu hỏi tương tự
Long O Nghẹn
Xem chi tiết
Long O Nghẹn
Xem chi tiết
Bách Vũ
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Nguyễn Hùng Mạnh
Xem chi tiết
Phạm Thanh Nghĩa
Xem chi tiết
Super Saiyan God
Xem chi tiết
Nguyễn Thị Hải Triều
Xem chi tiết
Huỳnh Thị Thanh Thảo
Xem chi tiết