ta có đặt P= \(\sqrt{a^2+b^2}.\sqrt{c^2+d^2}=\sqrt{a^2c^2+b^2c^2+a^2d^2+b^2d^2}\)
=> P^2= \(a^2c^2+b^2c^2+a^2d^2+b^2d^2=a^2d^2+b^2c^2+2abcd+a^2c^2+b^2d^2-2abcd\)
=> P^2= \(\left(ad+bc\right)^2+\left(ac+bd\right)2\ge\left(ad+bc\right)^2\)
=> \(P^2\ge\left(ad+bc\right)^2=>P\ge ad+bc\)
Đúng 0
Bình luận (0)