a: \(=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1^2=1\)
a: \(=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1^2=1\)
Chứng minh rằng:
a) sin4 α + sin2 α.cos2 α + cos2α = 1
b) (1+tan α).(1+cot α).sin α.cos α=1 + 2.sin α.cos α
c) sin6 α+cos6 α + 3 sin2 α.cos2 α = 1
Chứng minh rằng các biểu thức sau là những số không phụ thuộc α
A = 2 ( sin 6 α + cos 6 α ) - 3 ( sin 4 α + cos 4 α )
Cho góc α thỏa mãn π 2 < α < π và tan α – cotα = 1. Tính P = tanα + cotα
A. P = 1
B. P = -1
C. P = - 5
D. P = 5
Nêu định nghĩa của tanα , cotα và giải thích vì sao ta có:
tan(α + kπ) = tanα, k ∈Z;
cot(α + kπ) = cotα, k ∈Z;
Từ ý nghĩa hình học của tanα và cotα hãy suy ra với mọi số nguyên k, tan(α + kπ) = tanα, cot(α + kπ) = cotα.
Cho góc α thỏa mãn tanα = 5. Tính P= sin4 α - cos4 α
A. P = 2
B. P = 1/2
C. P = 11/13
D. P = 12/13
Cho cos α=-2/5 và π<α<3π/2. tính tanα, sinα ,cotα
Cho góc α thỏa mãn tan α = - 4 3 và π 2 < α < π .Tính P = sin 2 α - cos α sin α - cos 2 α
A. P = 30/11
B. P = 31/11
C. P = 32/11
D. P = 34/11
Cho cos α = 2/3. Tính giá trị của biểu thức A = tan α + 3 c o t α tan α + c o t α
A. 7/18
B. 1/2
C. 5/12
D. 17/9