\(\left(x^{10}-y^{10}\right):\left(x^4-x^3y+x^2y^2+xy^3+y^4\right)chung-minh-hai-da-thuc-chia-het-cho-nha\)
chứng minh x^10-y^10 chia hết cho x^4+x^3y+x^2y^2+xy^3+y^4 ?
cmr (x^10-y^10) chia hết cho (x^4-x^3y=x^2y^2-xy^3+y^4)
cac ban giup minh voi: Chung to rang:
(x^3+x^2y+xy^2+y^3)*(x-y)=x^4*y^4
chứng minh các đẳng thức sau
a) (x-y)(x^4+x^3y+x^2y^2+xy^3+y^4)= x^5-y^5
b) (x+y)(x^4-x^3y+x^2y^2-xy^3+y^4)= x^5+y^5
c) (a+b)(a^3-a^2b+ab^2-b^3)=a^4-b^4
cho x> căn 2, y> căn 2,chứng minh x^4-x^3y+x^2y^2-xy^3+y^4>x^2+y^2
Bài 1: Chứng minh mọi số nguyên x,y thì:
`a)B=x^3y^2-3x^2y+2y` chia hết `(xy -1)`
`b)C=xy(x^3 +2)-y(xy^3+2x)` chia hết `(x^2 + xy + y^2)`
MN giúp mk với ạ...ks ạ...
b1 cho x-y=5 chứng minh rằng x-3y/5-2y=1
b2 cho x^2+y^2/xy=10/3;x>y>0 chứng minh rằng x+y/x-y=2
Chung minh rang :
x^4+y^4+(x+y)^4=2(x^2+xy+y^2)^2