\(B=n^2+n+3\)
\(=n.n+n+3\)
\(=n\left(n+1\right)+3\)
Mà \(n\left(n+1\right)⋮2\) với mọi \(n\in Z\)
\(\Rightarrow B⋮̸2\)
\(B=n^2+n+3\)
\(=n.n+n+3\)
\(=n\left(n+1\right)+3\)
Mà \(n\left(n+1\right)⋮2\) với mọi \(n\in Z\)
\(\Rightarrow B⋮̸2\)
Chứng minh rằng: Với mọi số nguyên n thì
a, A=(n+6).(n+7) luôn chia hết cho 2
b, B=(n2+n+3) không chia hết cho 2
Chứng tỏ rằng với mọi số nguyên n thì :
A = ( n + 6 ) ( n + 7 ) luôn luôn chia hết cho 2 ;
B = n^2 + n + 3 không chia hết cho 2.
1. Tìm các số nguyên x, y để :
x,(y-5) = -9
2. Chứng minh rằng với mọi số nguyên n thì :
a) A = (n+6).(n+7) luôn luôn chia hết cho 2
b) n2+n+2017 không chia hết cho 2
3. Cho a và b là hai số nguyên không chia hết cho 3 nhưng có cùng số dư khi chia cho 3. Chứng minh rằng hai số đó trừ 1 lại chia hết cho 3.
4. Cho A = 20+21+22+...+22017. Hỏi A có là số chính phương không? Vì sao ; A+1 có là số chính phương không?
Chứng minh rằng với mọi số tự nhiên `n`, ta luôn có:
\(405^n\)\(+2^{405}\)\(+17^{37}\) không chia hết cho `10`
chứng minh rằng với mọi số nguyên n ta luôn có
a) n.(n+1) chia hết cho 2
b) n.(n+1).n.(n+2) chia hết cho 6
c)n.(n+1).(2n+1) chia hết cho 2
d) n.(2n+1) .(7n+1) chia hết cho 6
Chứng tỏ rằng với mọi số nguyên n thì :
a) \(A=\left(n+6\right)\left(n+7\right)\) luôn luôn chia hết cho 2
b) \(B=n^2+n+3\)không chia hết cho 2 .
Bài 1:
1)Chứng minh rằng với mọi số nguyên n ta luôn có:n(n+1)(2n+1)chia hết cho 6
2)Chứng minh rằng 17 không viết được dưới dạng tổng của 3 hợp số khác nhau
1.Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) ( n + 6 ) chia hết cho 2
2.Chứng tỏ rằng với mọi số tự nhiên n thì tích n(n+5) chia hết cho 2
3. Gọi A = n2 + n + 1 . Chứng minh rằng :
a) A không chia hết cho 2
b) A không chia hết cho 5
Bài 6
a, chứng minh rằng với mọi số tự nhiên n thuộc N thì 60n +15 chia hết cho 15 nhưng không chia hết cho 30
b, chứng minh rằng không có số tự nhiên nào chia 15 dư 6 , chia 9 dư 1
c, chứng minh rằng 1005a +2100b chia hết cho 15 , với mọi số tự nhiên a,b thuộc N
d, chứng minh rằng A= n2+n+1 không chia hết cho 2 và 5 với mọi số tự nhiên n thuộc N