Phương Akane

Chứng minh rằng với mọi số nguyên dương n:

\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n}\le\)\(n\sqrt{\frac{n+1}{2}}\)

Đặng Ngọc Quỳnh
29 tháng 9 2020 lúc 22:30

BĐT đúng với n=2

giả sử BĐT đúng với n=k , tức là: \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}< k\sqrt{\frac{k+1}{2}}\)

Ta phải chứng minh BĐT đúng vớới n=k+1:

\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}+\sqrt{k+1}< \left(k+1\right)\sqrt{\frac{k+2}{2}}\)

Ta thấy: \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}+\sqrt{k+1}< k\sqrt{\frac{k+1}{2}}+\sqrt{k+1}\)

Mà: \(k\sqrt{\frac{k+1}{2}}+\sqrt{k+1}< \left(k+1\right)\sqrt{\frac{k+2}{2}}\)(*)

Thậy vậy: (*)\(\Leftrightarrow\sqrt{k+1}\left(\frac{k}{\sqrt{2}}+1\right)< \left(k+1\right)\sqrt{\frac{k+2}{2}}\Leftrightarrow\frac{k}{\sqrt{2}}+1< \sqrt{k+1}\sqrt{\frac{k+2}{2}}\)

\(\Leftrightarrow\frac{k+\sqrt{2}}{\sqrt{2}}< \sqrt{k+1}\frac{\sqrt{k+2}}{\sqrt{2}}\Leftrightarrow k^2+2\sqrt{2k}+2< k^2+3k+2\)(luôn đúng)

Suy ra: \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}+\sqrt{k+1}< \left(k+1\right)\sqrt{\frac{k+2}{2}}\)

hay \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...\sqrt{n}< n\sqrt{\frac{n+1}{2}}\)

Bình luận (0)
 Khách vãng lai đã xóa
Phương Akane
1 tháng 10 2020 lúc 8:56

Mình cảm ơn bạn ạ!!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
Phạm Bá Tâm
Xem chi tiết
ĐẶng Trung Kiên
Xem chi tiết
Anh Bên
Xem chi tiết
Phan Mạnh Tuấn
Xem chi tiết
like game
Xem chi tiết
Duong Thi Minh
Xem chi tiết
khôi lê nguyễn kim
Xem chi tiết
nguyenthithuytien
Xem chi tiết
HoàngMiner
Xem chi tiết