1) Chứng minh rằng với mọi số nguyên dương \(n>1\), ta luôn có: \(\log_n\left(n+1\right)>\log_{n+1}\left(n+2\right)\)
2) Tìm nguyên hàm \(\int\dfrac{x^3-1}{x^4+x}dx\)
chứng minh rằng với mọi số tự nhiên n>1,ta đều có \(\frac{4^n}{n+1}< \frac{\left(2n\right)!}{\left(n!\right)^2}\)
1) Gọi \(d\) là tổng độ dài các đường chéo của một đa giác lồi trong mặt phẳng có \(n\) đỉnh, \(n>3\). Gọi \(p\) là chu vi của đa giác đó. Chứng minh rằng
\(n-3< \dfrac{2d}{p}< \left[\dfrac{n}{2}\right]\left[\dfrac{n+1}{2}\right]-2\)
(với \(\left[x\right]\) là số nguyên lớn nhất không vượt quá \(x\))
2) Tìm tất cả các hàm số \(f:ℕ^∗\rightarrowℕ^∗\) thỏa mãn điều kiện
\(f\left(x+f\left(y\right)\right)=y+f\left(x+2022\right);\forall x,y\inℕ^∗\)
Chứng minh rằng với mọi số tự nhiên n>1,ta có \(\sqrt{x^2+\sqrt{x^2+....+\sqrt{x^2}}}< \left|x\right|+1\)(n dấu căn)
Với mỗi số nguyên dương n, gọi u n = 9 n - 1 . Chứng minh rằng với mọi số nguyên dương n thì un luôn chia hết cho 8.
Cm rằng vs mọi số nguyên dương n>= 4 ta có: 3^n-1 > n(n+2)
Help
Chứng minh rằng với mọi số nguyên n≥2n≥2, ta luôn có đẳng thức sau :
(1−14)(1−19)...(1−1n2)=n+12n
Chứng minh rằng với mọi số nguyên n, ta có:
1.4 + 2.7 + ⋅ ⋅ ⋅ + n 3 n + 1 = n n + 1 2 (1)
1) Cho \(P\left(x\right),Q\left(x\right)\inℤ\left[x\right]\). Giả sử với mọi số nguyên dương \(n\) thì \(P\left(n\right),Q\left(n\right)>0\) đồng thời tồn tại \(d\) nguyên dương sao cho \(gcd\left(P\left(n\right),Q\left(n\right)\right)\le d\) với mọi \(n\) nguyên dương. Biết \(2^{Q\left(n\right)}-1|3^{P\left(n\right)}-1\) với mọi \(n\) nguyên dương. Chứng minh rằng \(Q\left(x\right)\) là đa thức hằng.
2) Cho \(p\) là số nguyên tố sao cho \(q=2p+1\) cũng là số nguyên tố. Chứng minh rằng \(q\) có bội mà tổng các chữ số không quá 3.