Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
cfefwe

Chứng minh rằng trong 7 số nguyên tố lớn 3 bất kỳ, luôn có hai số có hiệu chia hết cho 18.

Bảo An Nguyễn
2 tháng 12 2023 lúc 20:22

Để chứng minh rằng trong 7 số nguyên tố lớn hơn 3 bất kỳ, luôn tồn tại hai số có hiệu chia hết cho 18, ta sẽ sử dụng một phương pháp đơn giản.

Chọn 7 số nguyên tố lớn hơn 3: Đặt các số này lần lượt là p₁, p₂, p₃, p₄, p₅, p₆, p₇.

Xét các số pᵢ (i = 1, 2, …, 7):

Ta biết rằng mỗi số nguyên tố lớn hơn 3 đều có dạng 6k ± 1 (với k là một số nguyên).Nếu pᵢ ≡ 1 (mod 6), thì pᵢ - 1 ≡ 0 (mod 6) và pᵢ + 1 ≡ 2 (mod 6).Nếu pᵢ ≡ 5 (mod 6), thì pᵢ - 1 ≡ 4 (mod 6) và pᵢ + 1 ≡ 0 (mod 6).

Xét các hiệu của các số pᵢ:

Nếu có hai số pᵢ và pⱼ sao cho pᵢ - pⱼ = 18, thì hiệu này chia hết cho 18.Xét trường hợp:Nếu pᵢ ≡ 1 (mod 6) và pⱼ ≡ 5 (mod 6), thì pᵢ - pⱼ = 18.Nếu pᵢ ≡ 5 (mod 6) và pⱼ ≡ 1 (mod 6), cũng có pᵢ - pⱼ = 18.

Vậy, luôn tồn tại hai số nguyên tố lớn hơn 3 trong 7 số đã cho có hiệu chia hết cho 18. 🌟


Các câu hỏi tương tự
Trần Phan Kiều Oanh
Xem chi tiết
Trần Khánh Châu
Xem chi tiết
Bảo Bình Đáng Yêu
Xem chi tiết
THI MIEU NGUYEN
Xem chi tiết
THI MIEU NGUYEN
Xem chi tiết
Hoang My
Xem chi tiết
Nguyễn Thị Lan Anh
Xem chi tiết
Nguyễn Thị Lan Anh
Xem chi tiết
Đỗ Nam Trâm
Xem chi tiết