Cho 4 số nguyên tố lớn hơn 5. Chứng tỏ rằng luôn tồn tại ít nhất hai số có tổng hoặc hiệu chia hết cho 18.
a) Chứng minh rằng trong 5 số nguyên tố lớn hơn 5 luôn tìm được 2 số có hiệu chia hết cho 10.
b) Tìm số tự nhiên có 2 chữ số khác nhau. Biết rằng 2 chữ số của số đó đều là số nguyên tố. Tích của số đó với các chữ số của nó là 1 số có 3 chữ số giống nhau được tạo thành từ chữ số hàng đơn vị của số đó.
Bài 1: Cho số nguyên tố p lớn hơn 5 thỏa mãn p + 14 và p2 + 6 cũng là số nguyên tố. Chứng minh rằng p + 11 chia hết cho 10.
Bài 2: Cho số nguyên tố p lớn hơn 3 thỏa mãn 2p + 1 cũng là số nguyên tố. Chứng minh rằng p + 1 chia hết cho 6.
Bài 3: Cho các số nguyên tố p thỏa mãn 8p - 1 cũng là số nguyên tố. Chứng minh rằng 8p + 1 cũng là hợp số.
Bài 4: Tổng của 3 số nguyên tố bằng 1012. Tìm số nhỏ nhất trong 3 số nguyên tố đó.
câu 1 :có hay ko một số nguyên tố mà khi chia cho 12 mà dư 9?
câu 2:Chứng minh rằng :trong 3 số nguyên tố lớn hơn 3 ,luôn tồn tại hai số nguyên tố ma tổng hoăch hiệu của chúng chia hết cho 12.
Chứng minh rằng trong 7 số nguyên tố lớn 3 bất kỳ, luôn có hai số có hiệu chia hết cho 18.
8) Chứng minh trong 3 số nguyên tố lớn hơn 3 luôn tồn tại hai số có hiệu chia hết cho 6.
Chứng minh trong 3 số nguyên tố lớn hơn 3 luôn tồn tại hai số có hiệu chia hết cho 6.
Chứng minh trong 3 số nguyên tố lớn hơn 3 luôn tồn tại hai số có hiệu chia hết cho 6.
Chứng minh rằng: Trong 3 số nguyên tố lớn hơn 3, luôn tồn tại 2 số nguyên tố mà tổng hoặc hiệu của chúng chia hết cho 12.