Giả sử \(n=a^2+b^2\) và \(m=c^2+d^2\)
\(\Rightarrow n.m=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)
\(=\left(a^2c^2+b^2d^2-2abcd\right)+\left(a^2d^2+b^2c^2+2abcd\right)\)
\(=\left(ac-bd\right)^2+\left(ad+bc\right)^2\) là tổng 2 bình phương (đpcm)