A,B,C không thẳng hàng
=>A,B,C là ba đỉnh của ΔABC
=>\(AB+AC>BC;AC+BC>AB;BC+AC>AB\)
Xét tứ giác ABA'B' có
O là trung điểm chung của A'A và BB'
nên ABA'B' là hình bình hành
=>AB=A'B'
Xét tứ giác AC'A'C có
O là trung điểm chung của A'A và C'C
nên AC'A'C là hình bình hành
=>AC=A'C'
Xét tứ giác BC'B'C có
O là trung điểm chung của BB' và CC'
nên BC'B'C là hình bình hành
=>BC=B'C'
\(AB+AC>BC\)
mà AB=A'B' và AC=A'C' và BC=B'C'
nên \(A'B'+A'C'>B'C'\left(1\right)\)
AC+BC>AB
mà AC=A'C' và BC=B'C' và AB=A'B'
nên A'C'+B'C'>A'B'(2)
BA+BC>AC
mà BA=B'A' và BC=B'C' và AC=A'C'
nên B'A'+B'C'>A'C'(3)
Từ (1),(2),(3) suy ra A'B'A'C'B'C' là ba cạnh của một tam giác
=>A',B',C' không thẳng hàng(ĐPCM)