Nhờ mọi người giải giúp mình với
Bài 1: cho a+b=c+d và a^3+b^3=c^3+d^3 chứng minh rằng a^2019+b^2019=c^2019+d^2019
Bài 2: chứng minh rằng nếu a^3+b^3+c^3 = (a+b+c)^3 thì a^2013+b^2013+c^2013 = (a+b+c)^2013
a)Chứng minh rằng nếu a^4 +b^4 +c^4 +d^4 =4abcd và a,b,c,d là các số dương thì a =b=c=d
b)Chứng minh rằng nếu m= a+ b +c thì (am+ bc )(bm+ac)(cm+ab)= (a+b)^2 (a+c )^2 (b+c)^2
Chứng minh rằng nếu ab+bc+ac=abc và a+b+c =0 thì 1/a^2+1/b^2+1/c^2=1
Giúp mik với nha !!!!!
Cho a^2+b^2+c^2+3= 2(a+b+c). Chứng minh a=b=c=1
2. Chứng minh rằng nếu a+b+c=0 thì a^3+b^3+c^3=3abc
Chứng minh rằng nếu : a^2 + b^2 + c^2 = ab + ac + bc thì a = b = c
Các bạn giải hộ mk nữa với
Mk sẽ tick cho người nhanh nhất
chứng minh rằng nếu:1/a+1/b+1/c=2 và a+b+c=a*b*c thì 1/a^2+1/b^2+1/c^2=3
Chứng minh rằng nếu các cạnh a,b,c cua tam giác thỏa mãn a^2=b^2+bc thì góc A= 2 góc B và ngược lại. Với a,b,c là độ dài các cạnh đối diện với góc A, B, C
Chứng minh rằng: Nếu a, b, c >0 thì a/(b + c) + b(c+a)+ c/(b + a) >=3/2
Giúp em với mọi người ơi...Bài này em không làm bằng phương pháp S*O*S hoặc dùng Cô si (AM-GM) như bình thường được rồi.
Cho a, b, c > 0 thỏa mãn a + b +c = 3. Chứng minh rằng:
\(A=\frac{a^2}{a+b^2}+\frac{b^2}{b+c^2}+\frac{c^2}{c+a^2}\ge\frac{3}{2}\)