\(A=\dfrac{3}{1^2+2^2}+\dfrac{5}{2^2+3^2}+...+\dfrac{19}{9^2+10^2}\) (sửa \(1^22^2\) thành \(1^2+2^2\))
Ta có : \(\left(1+2\right)^2=1^2+2^2+2.1.2\Rightarrow1^2+2^2< \left(1+2\right)^2\)
\(\Rightarrow1^2+2^2< 3^2=3.3\)
\(\Rightarrow\dfrac{3}{1^2+2^2}< \dfrac{1}{3}< 1\)
Tương tự \(\dfrac{5}{2^2+3^2}< \dfrac{1}{5}< 1\)
\(.....\)
\(\dfrac{9}{9^2+10^2}< \dfrac{1}{19}< 1\)
\(\Rightarrow A=\dfrac{3}{1^2+2^2}+\dfrac{5}{2^2+3^2}+...+\dfrac{19}{9^2+10^2}< 1.9=9< 1\)
\(\Rightarrow dpcm\)