Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Võ Đông Anh Tuấn

Chứng minh rằng các trung điểm của bốn cạnh của một hình thoi là các đỉnh của một hình chữ nhật.
 

Võ Đông Anh Tuấn
21 tháng 3 2016 lúc 12:04

Ta có: EB = EA, FB = FA (gt)

nên EF là đường trung bình của ∆ABC.

Do đó EF // AC

HD = HA, GD = GC (gt)

nên HG là đường trung bình của ∆ADC.

Do đó HG // AC

Suy ra EF // HG       (1)

Chứng minh tương tự EH // FC    (2)

Từ (1) (2) ta được EFGH là hình bình hành.

Lại có EF // AC và BD ⊥ AC nên BD ⊥ EF

EH // BD và EF ⊥ BD nên EF ⊥ EH

nên FEH = 900

Hình bình hành EFGH có  E = 900 nên là hình chữ nhật.

SKT_ Lạnh _ Lùng
21 tháng 3 2016 lúc 12:09

Ta có: EB = EA, FB = FA (gt)

nên EF là đường trung bình của ∆ABC.

Do đó EF // AC

HD = HA, GD = GC (gt)

nên HG là đường trung bình của ∆ADC.

Do đó HG // AC

Suy ra EF // HG       (1)

Chứng minh tương tự EH // FC    (2)

Từ (1) (2) ta được EFGH là hình bình hành.

Lại có EF // AC và BD ⊥ AC nên BD ⊥ EF

EH // BD và EF ⊥ BD nên EF ⊥ EH

nên FEH = 900

Hình bình hành EFGH có  E = 900 nên là hình chữ nhật.

 ai tích mình tích lại

Good Boy
21 tháng 3 2016 lúc 12:13

cái này hok từ đời nào òi bn dảnh ghê nhưng mk sẽ kick vì bn đã từng tl câu hỏi của mk hihihihi


Các câu hỏi tương tự
phương uyên
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Tran Thi Hang
Xem chi tiết
Võ Đông Anh Tuấn
Xem chi tiết
the
Xem chi tiết
lê trâm anh
Xem chi tiết
Tran Thi Hang
Xem chi tiết
Đoàn Quốc Huy
Xem chi tiết