Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Nguyễn Tanh Ngọc

chứng minh rằng : 1-1/2 - 1/2^2 - 1/ 2^3 - 1/2^4 - ...............-1/2^10 > 1/2^11

Mr Lazy
14 tháng 6 2015 lúc 19:12

\(\Leftrightarrow2-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{11}}\right)>0\)

Ta có: \(\frac{1}{2^{12}}-1=\left(\frac{1}{2}-1\right)\left(\frac{1}{2^{11}}+\frac{1}{2^{10}}+\frac{1}{2^9}+...+\frac{1}{2}+1\right)\)

\(\Rightarrow1+\frac{1}{2}+...+\frac{1}{2^{11}}=2\left(1-\frac{1}{2^{12}}\right)=2-\frac{1}{2^{11}}\)

\(\Rightarrow2-\left(1+\frac{1}{2}+...+\frac{1}{2^{11}}\right)=2-\left(2-\frac{1}{2^{11}}\right)=\frac{1}{2^{11}}>0\left(đpcm\right)\)

mai phuong
12 tháng 5 2017 lúc 19:42

1-1/2-1/2^2-......-1/2^11

ta có:1-1/2-1/2^2-.....-1/2^11=1-(1/2+1/2^2+....+1/2^11)

A=1/2+1/2^2+1/2^3+...+1/2^11

2A=2.(1/2+1/2^2+1/2^3+...+1/2^11)

2A=2.1/2+2.1/2^2+....+2.1/2^11

2A-A=(1+1/2^2+1/2^3+...+1/2^10)-(1/2+1/2^2+1/2^3+....+1/2^11)

A=1-1/2^11=2048/2048-1/2048=2047/2048

vì 1-(1/2+1/2^2+1/2^3+...+1/2^11)=1-A

=> 1-(1/2+1/2^2+1/2^3+...+1/2^11)=1-2047/2048=2048/2048-2047/2048=1/2048=1/2^11

vậy 1-1/2-1/2^2-1/2^3-...-1/2^11=1/2^11


Các câu hỏi tương tự
Nguyễn Thu Ngân
Xem chi tiết
Tạ Thanh
Xem chi tiết
Đạt Nguyễn
Xem chi tiết
Phước Nguyễn
Xem chi tiết
Phan Công Thành
Xem chi tiết
tth_new
Xem chi tiết
Nguyễn Hoàng Thụy Kha
Xem chi tiết
Nguyễn Thị Thoa
Xem chi tiết
chaoten
Xem chi tiết