\(x^2+\left(a+b\right)^2x-2\left(a^2-ab+b^2\right)=0\) (1)
\(\left(1\right)\Leftrightarrow x^2+\left(a+b\right)x+\left(\frac{a+b}{2}\right)^2=\frac{\left(a+b\right)^2}{4}+2\left(a^2-ab+b^2\right)=0\)
\(\left(1\right)\Leftrightarrow\left(x+\frac{a+b}{2}\right)^2=\frac{\left(a+b\right)^2+8\left(a^2-ab+b^2\right)}{4}\left(2\right)\)
để (2) có nghiệm => VP >=0
Vậy ta cần chứng minh VP>=0 với mọi a,b
\(D=\left(a+b\right)^2+8\left(a^2-ab+b^2\right)=9\left(a+b\right)^2-24ab=9\left(a^2+2ab+b^2\right)-24ab\)
\(D=3\left(a^2-2ab+b^2\right)+a^2+b^2=3\left(a-b\right)^2+\left(a^2+b^2\right)\)
D là tổng của 3 số không âm => \(D\ge0\) =>dpcm
p/s: mình quen làm kiểu lớp 8 giờ nhìn lại lớp 9.