Chứng minh:
a)\(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\forall a,b>0\)
b)\(\frac{a}{\sqrt{b}}-\sqrt{a}\ge\sqrt{b}-\frac{b}{\sqrt{a}}\forall a,b>0\)
c) Với a>b>0 và m>n (m,n \(\in\)N) chứng minh:
\(\frac{a^m-b^m}{a^m+b^m}>\frac{a^n-b^n}{a^n+b^n}\)
1. Cho a,b dương. Chứng minh: \(a^{m+n}+b^{m+n}\ge\frac{1}{2}\left(a^m+b^m\right)\)
2. Cho a,b dương. Chứng minh \(\frac{2ab}{a+b}+\sqrt{\frac{a^2+b^2}{2}}\ge\sqrt{ab}+\frac{a+b}{2}\)
Chứng minh: \(|\frac{m}{n}-\sqrt{2}|\ge\frac{1}{n^2\left(\sqrt{3}+\sqrt{2}\right)}\) với mọi số nguyên dương m,n.
Thực hiện phép tính
a) \(\left(\sqrt{ab}+2\sqrt{\frac{b}{a}}-\sqrt{\frac{a}{b}+\sqrt{\frac{1}{ab}}}\right).\sqrt{ab}\)
b) \(\left(\frac{am}{b}\sqrt{\frac{n}{m}}-\frac{ab}{n}\sqrt{mn}+\frac{a^2}{b^2}\sqrt{\frac{m}{n}}\right).a^2b^2.\sqrt{\frac{n}{m}}\)
\(CMR:\sqrt[m]{\frac{a^m+b^m}{2}}\le\sqrt[n]{\frac{a^n+b^n}{2}};m;n\in N;m\le n\)
RÚT GỌN CÁC BIỂU THỨC SAU
\(A=\left(\frac{am}{b}\sqrt{\frac{n}{m}}-\frac{ab}{n}\sqrt{mn}+\frac{a^2}{b^2}\sqrt{\frac{m}{n}}\right).a^2b^2\sqrt{\frac{n}{m}}\)
\(B=\frac{\sqrt{a}+a\sqrt{a}-\sqrt{b}-b\sqrt{a}}{ab-1}\)
CÁC BẠN GIÚP MÌNH VỚI
CMR : \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}+\sqrt{m^2+n^2}\ge\sqrt{\left(a+c+m\right)^2+\left(b+d+n\right)^2}\)
( BĐT Bunhiakopski biến thể )
1.Chứng minh \(\sqrt{x^2+xy+y^2}+\sqrt{x^2+xz+z^2}\ge\sqrt{y^2+yz+z^2}\)
2. Cho a,b,c>0. Chứng minh \(\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)-\frac{a+b+c}{\sqrt[3]{abc}}\le6\)
3. Cho a,b>0 , n là số nguyên dương. Chứng minh \(\frac{1}{\sqrt[n]{a}}+\frac{1}{\sqrt[n]{b}}\ge2\sqrt[n]{\frac{2}{a+b}}\)
4. Cho a,b,c >0. Chứng minh \(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ba}\le\frac{a+b+c}{2abc}\)
a) cho a,b,c thỏa mãn a > c và b > c > 0. tìm số n nhỏ nhất để có bất đẳng thức sau :
\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le n\sqrt{ab}\)
b) CMR với mọi số nguyên dương n
\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n}\le n\sqrt{\frac{n+1}{2}}\)