cm với mọi đa thức f(x) có hệ số hữu tỉ nhận căn 3 là nghiệm thì chia hết cho x2-3
Chứng minh rằng với mọi đa thức có hệ số hữu tỉ nhận \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) là nghiệm đều chia hết cho\(x^2-5\)
f(x)là một đa thức có hệ số nguyên, Chứng minh rằng nếu f(0),f(1) ,f(2), f(3) ,f(4) đều không chia hết cho 5 thì phương trình f(x) = 0 không có nghiệm nguyên
1,cho a và b là hai số tự nhiên nguyê tố cùng nhau với 3 và a+b chia hết cho 3. chứng minh rằng xa +xb+1 chia hết cho x2+x+1
2,cho f(x) là đa thức bậc lớn hơn 1 có các hệ số nguyên, m và n là hai số nguyên tố cùng nhau, chứng minh rằng
f( m+n) chia hết cho mn <=> f(m) chia hết cho n và f(n) chia hết cho m
ai làm hộ mik đi... nhanh dùm với các chế
1, Cho đa thức \(P\left(x\right)=ax^3+bx^2+cx+d\) với a,b,c,d là các hệ số nguyên. CMR nếu P(x) chia hết cho 5 với mọi giá trị nguyên của x thì các hệ số a,b,c,d đều chia hết cho 5
2, GPT nghiệm nguyên: \(5x^2+8y^2=20412\)
cho f(x) là đa thức bậc 3 hệ số nguyên. Chứng minh: nếu \(3-\sqrt{2}\) là nghiệm thì \(3+\sqrt{2}\) cũng là nghiệm
Thầy cho em hỏi ạ:
1,Cho đa thức bậc 4 f(x) biết f(1)=f(2)=f(3)=0, f(4)=6 và f(5)=72. Tìm dư f(2010) khi chia cho 10
2,Cho đa thức bậc 4 f(x) có hệ số bậc cao nhất bằng 1 và f(1)=10,f(2)=20 và f(3)=30. Tính f(10)+f(-6)
3,Tìm đa thức f(x) biết rằng f(x) chia cho x-3 thì dư 2, f(x) chia cho x+4 thì dư 9 còn f(x) chia cho x^2+x-12 thì được thương là x^2+3 và còn dư.