Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
duonghoangkhanhphuong

Chứng minh m, n là số nguyên ta có: 

b. mn(m^2 - n^2) chia hết cho 6

c. n(n+1)(2n+1) chia hết cho 6

Lê Song Phương
24 tháng 10 2021 lúc 4:36

b) Ta có: \(mn\left(m^2-n^2\right)=mn\left(m-n\right)\left(m+n\right)\)(*)

Xét tích (*), ta thấy khi m và n có cùng tinh chẵn lẻ thì m - n và m + n là số chẵn, từ đó (*)\(⋮2\)

Nếu chỉ có một trong hai số m và n là số chẵn, thì hiển nhiên (*) \(⋮2\)

Vậy (*) \(⋮2\)với mọi trường hợp m và n nguyên. (1)

Xét tiếp tích (*), ta thấy khi m và n có cùng số dư (là các cặp 0,0 ; 1,1 ; 2,2) khi chia cho 3 thì \(m-n⋮3\), từ đó (*) \(⋮3\)

Khi một trong hai số m và n chia hết cho 3 (là các cặp 0,1 ; 0,2) thì hiển nhiên (*) \(⋮3\)

Khi hai số m và n có tổng các số dư khi chia cho 3 là 3 (là cặp 1,2) thì \(m+n⋮3\), từ đó (*) \(⋮3\)

Vậy (*) \(⋮3\)với mọi trường hợp m và n nguyên. (2)

Mặt khác \(\left(2,3\right)=1\)(3) 

Từ (1), (2) và (3) \(\Rightarrow\)(*) \(⋮2.3=6\)với mọi m và n nguyên \(\Rightarrow mn\left(m^2-n^2\right)⋮6\)với mọi m và n nguyên.

c) Đặt \(n\left(n+1\right)\left(2n+1\right)=k\left(k\inℤ\right)\)

Xét số k, ta thấy n và n + 1 không cùng tính chẵn lẻ nên trong hai số n và n + 1 luôn có một số là bội của 2

\(\Rightarrow k⋮2\)với mọi n nguyên (1)

Xét tiếp số k lần nữa, ta lại thấy khi n\(⋮3\)thì hiển nhiên \(k⋮3\)

Khi n chia 3 dư 2 thì \(n+1⋮3\),từ đó \(k⋮3\)

Khi n chia 3 dư 1 thì \(2n+1⋮3\), từ đó \(k⋮3\)

Vậy \(k⋮3\)với mọi n nguyên. (2)

Mà \(\left(2,3\right)=1\)(3)

Từ (1), (2) và (3) \(\Rightarrow k⋮2.3=6\)với mọi n nguyên \(\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮6\)với mọi n nguyên

Khách vãng lai đã xóa

Các câu hỏi tương tự
PeaPea
Xem chi tiết
Nisciee
Xem chi tiết
Le Minh Hieu
Xem chi tiết
Nguyễn Minh Nhật
Xem chi tiết
Minh Hoàng Trương
Xem chi tiết
Hacker Ngui
Xem chi tiết
Đòan đức duy
Xem chi tiết
Nguyễn An
Xem chi tiết
Quỳnh Mii
Xem chi tiết