10-x-x2+(x+1)+(1+x+x2)
=x3+x+11
vậy x gt của bt ko phụ thuộc vào x
10-x-x2(x+1)+x(1+x+x2)
=10-x-x3+x2+x+x2+x3
=2x2+10
=2(x2+5)
ta có:=10-x-x3-x2+x+x2+x3=10
Vậy giá trị của biểu thức k phụ thuộc vào x
10-x-x2+(x+1)+(1+x+x2)
=x3+x+11
vậy x gt của bt ko phụ thuộc vào x
10-x-x2(x+1)+x(1+x+x2)
=10-x-x3+x2+x+x2+x3
=2x2+10
=2(x2+5)
ta có:=10-x-x3-x2+x+x2+x3=10
Vậy giá trị của biểu thức k phụ thuộc vào x
Chứng minh giá trị biểu thức \(p=\left(x-2\right)\left(x+3\right)+\left(x+1\right)^2-2x^2-3x\) không phụ thuộc vào giá trị của biến
chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến
\(\left(2-x\right)\left(1+2x\right)+\left(1+x\right)-\left(x^4+x^3-5x^2-5\right)\)
Chứng Minh rằng giá trị của các biểu thức sau ko phụ thuộc vào biến:
a)\(\left(2-x\right)\left(1+2x\right)+\left(1+x\right)-\left(x^4+x^3-5x^2-5\right)\\ \)
\(b)\left(x^2-7\right)\left(x+2\right)-\left(2x-1\right)\left(x-14\right)+x\left(x^2-2x-22\right)+35\)
CMR: giá trị của biểu thức sau ko phụ thuộc vào giá trị của biến
A/ \(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
B/ \(x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)
Bài 7.Chứng minh rằng giá trị của các biểu thức sau ko phụ thuộc vào giá trị của x:
a) \(\left(x+5\right)^2-\left(x-5\right)^2-20x+2\)
b) \(\left(x+3\right).\left(x-5\right)-\left(x-1\right)^2\)
c) \(\left(3x+2\right).\left(x-2\right)-x\left(3x-5\right)+8\)
d) \(2\left(3x+1\right).\left(2x+5\right)-6x\left(2x+4\right)-10\left(x-1\right)\)
chứng minh giá trị của biểu thức sau ko phụ thuộc vào x:
\(6x+2x\left(5x-3\right)-20+2x\left(x^2-6x\right)-x^2\left(2x-2\right)\)
Chứng minh với mọi x, y khác 0 thì giá trị của biểu thức \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(z+\frac{1}{z}\right)\)
không phụ thuộc vào giấ trị của biến
Chứng minh: Giá trị của các biểu thức sau không phụ thuộc vào x:
\(\frac{1}{2}\left(2x^2-4x+6\right)-\left(2+x\right).x-2\left(1-2x\right)\)
CMR biểu thức sau ko phụ thuộc vào giá trị của x:
M = \(\frac{\left(x^2+a\right).\left(1+a\right)+a^2.x^2+1}{\left(x^2-a\right).\left(1-a\right)+a^2.x^2+1}\)