+) Lấy a = b = c = 3 thì bất đẳng thức trên không đúng : \(\frac{2010}{27}
+) Lấy a = b = c = 3 thì bất đẳng thức trên không đúng : \(\frac{2010}{27}
cho a,b,c là các số dương thỏa mãn \(a+b+c\le3\)
Chứng minh \(\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ca}\ge670\)
CMR \(\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ca}\ge670\)với \(\hept{\begin{cases}a+b+c\le3\\a,b,c>0\end{cases}}\)
Cho a,b,c>0, chứng minh:\(\frac{1}{a^2+ab+bc}+\frac{1}{b^2+bc+ca}+\frac{1}{c^2+ca+ab}\ge\frac{\left(a+b+c\right)^2}{\left(ab+bc+ca\right)^2}\)
1, cho a,b,c>0. chứng minh \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
2, chứng minh: với mọi a,b \(\ne0\)\(\frac{a^2}{b^2}+\frac{b^2}{a^2}\ge\frac{a}{b}+\frac{b}{a}\)
3,cho các số thực \(\in\)đoạn 0 đến 1. chứng minh:\(a^4+a^3+c^2-ab-bc-ca\le1\)
4,cho a,b,c là các số thực dương tùy ý. chứng minh: \(\frac{a^3+b^3}{ab}+\frac{b^3+c^3}{bc}+\frac{c^3+a^3}{ca}\ge2\left(a+b+c\right)\)
5,cho a,b,c>0. chứng minh\(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge2\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right)\)
ai làm đk bài nào thì làm hộ e vs ạ
Cho a, b, c > 0. Chứng minh : \(\frac{1}{2a^2+bc}+\frac{1}{2b^2+ca}+\frac{1}{2c^2+ab}\le\left(\frac{a+b+c}{ab+bc+ca}\right)^2\)
cho a,b>0. Chứng minh rằng
\(\frac{2}{a^2+bc}+\frac{2}{b^2+ca}+\frac{2}{c^2+ab}\le\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\)
Cho a,b,c thỏa mãn a+b+c=1.Chứng minh:
\(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}< =\frac{3}{2}\)3/2
Với a, b, c >0 chứng minh:
\(\frac{a^3+b^3+c^3}{abc}+\frac{9\left(ab+bc+ca\right)}{a^2+b^2+c^2}\ge12\)
1, Cho a,b,c khác nhau đôi một.CMR
\(\frac{a^2}{\left(b-c\right)^2}+\frac{b^2}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\ge2\)
2,Cho 3 số thực dương thỏa mãn: \(a+b+c\le3\).CMR
\(\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ac}\ge670\)