Ta có:
\(1-cos^2a=sin^2a\Rightarrow\left(1+cosa\right)\left(1-cosa\right)=sin^2a\Rightarrow\frac{1+cosa}{sina}=\frac{sina}{1-cosa}\)
Ta có:
\(1-cos^2a=sin^2a\Rightarrow\left(1+cosa\right)\left(1-cosa\right)=sin^2a\Rightarrow\frac{1+cosa}{sina}=\frac{sina}{1-cosa}\)
1. Chứng minh rằng: \(\frac{1-2\sin.\cos\alpha}{sin^2\alpha-\cos^2\alpha}=\frac{sin\alpha-\cos\alpha}{sin\alpha+\cos\alpha}\) (\(\alpha\ne45^o\))
2. Chứng minh: \(\cos^4\alpha+\sin^2\alpha.\cos^2\alpha+\sin^2\alpha\) không phụ thuộc vào x
Chứng minh các hệ thức sau:
a) \(\frac{1-cos\alpha}{sin\alpha}=\frac{sin\alpha}{1+cos\alpha}\)
b) \(tan^2\alpha-sin^2\alpha=tan^2\alpha.sin^2\alpha\)
c) \(\frac{1-tan\alpha}{1+tan\alpha}=\frac{cos\alpha-sin\alpha}{cos\alpha+sin\alpha}\)
Chứng minh:
a)\(\cos^4\alpha-sin^4\alpha=2cos^2\alpha-1\)
b)\(\frac{cos\alpha}{1-sin\alpha}=\frac{1+sin\alpha}{cos\alpha}\)
c)\(\frac{\left(sin\alpha+cos\alpha\right)^2-\left(sin\alpha-cos\alpha\right)^2}{sin\alpha.cos\alpha}=4\)
Mình cần gấp!!!
Chứng minh:
a) \(\tan^2\alpha-\sin^2\alpha=\tan^2\alpha.\sin^2\alpha\)
b) \(\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{17\cos\alpha}\)
cho góc nhọn \(\alpha\)Chứng minh:
\(\frac{1-tan\alpha}{1+tan\alpha}=\frac{cos\alpha-sin\alpha}{cos\alpha+sin\alpha}\)
CMR\(\frac{1-2\cos^2\alpha}{1+2\sin\alpha.\cos\alpha}=\frac{\sin\alpha-\cos\alpha}{\sin\alpha+\cos\alpha}\)
1) Cho: \(\tan\alpha=\frac{1}{2}\). Tính \(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\)
2) Cho: \(\cos\beta=2\sin\beta.\) Hãy tính: \(\sin\beta.\cos\beta\)
3)Chứng minh hệ thức:
a/ \(\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}\)
b/ \(\cot^2\alpha-\cos^2\alpha=\cot^2\alpha.\cos\alpha\)
Chứng minh hệ thức sau:
\(\frac{\cos\alpha}{1-\sin\alpha}\)= \(\frac{1+\sin\alpha}{\cos\alpha}\)
chứng minh các đẳng thức sau
a) \(\dfrac{1-cos\alpha}{sin\alpha}=\dfrac{sin\alpha}{1+cos\alpha}\)
b)\(\dfrac{cos\alpha}{1+sin\alpha}+tg\alpha=\dfrac{1}{cos\alpha}\)