Chứng minh :\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)+...+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}}< n+1\left(n\in Z^+\right)\)
Chứng minh: \(n\left(n+2\right)\left(25n^2-1\right)⋮24\forall n\in N.\)
Chứng minh: \(n\left(n+2\right)\left(25^2-1\right)⋮24\forall n\in N\)
Chứng minh:
\(a^n+b^n+c^n\ge\left(\frac{a+2b}{3}\right)^n+\left(\frac{b+2c}{3}\right)^n+\left(\frac{c+2a}{3}\right)^n,\forall a,b,c>0;n\in N\)
1, CMR nếu a, b, c là các số tự nhiên đôi một nguyên tố cùng nhau thì \(\left(ab+bc+ca,abc\right)=1\)
2, CMR \(\forall n\in N\)* thì \(\dfrac{\left(17+12\sqrt{2}\right)^n-\left(17-12\sqrt{2}\right)^n}{4\sqrt{2}}\)
3, Tìm x,y∈Z:\(x^3-y^3=13\left(x^2+y^2\right)\)
CMR: \(\forall n\in N\)thì \(\left|\left\{\frac{n}{1}\right\}-\left\{\frac{n}{2}\right\}+\left\{\frac{n}{3}\right\}-...-\left(-1\right)^n\left\{\frac{n}{n}\right\}\right|< \sqrt{2n}\)
CMR:
\(\left(n+1\right)\left(n+2\right)...\left(n+n\right)⋮2^n\left(\forall n\in N\cdot\right)\)
Cho \(n\in N\)chứng minh:
\(A=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(n-4\right)+3\)không là số chính phương
Chứng minh \(\left(\frac{n}{2}\right)^n>n!>\left(\frac{n}{3}\right)^n\forall n\ge6\)