Chứng minh định lí: "trong một tam giác,cạnh đối diện với góc lớn hơn là cạnh lớn hơn là cạnh lớn hơn" theo gợi ý sau.
Cho tam giác ABC có B > C
a. Có thể xảy ra AC < AB hay không?
b. Có thể xảy ra AC = AB hay không?
Chứng minh định lí "Trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn" theo gợi ý sau:
Cho tam giác ABC có góc B > góc C.
a, Có thể xảy ra AC < AB hay không?
b, Có thể xảy ra AC = AB hay không?
Chứng minh định lý “Trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn” theo gợi ý sau: Cho tam giác ABC có ∠B > ∠C
Có thể xảy ra AC < AB hay không?
Chứng minh định lý “Trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn” theo gợi ý sau: Cho tam giác ABC có ∠B > ∠C
Có thể xảy ra AC = AB hay không?
Câu 1: Chứng minh định lí "Trong 1 tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn" theo gợi ý sau:
Cho tam giác ABC có góc B > góc C
a) Có thể xảy ra AC < AB không?
b) Có thể xảy ra AC = AB không?
Câu 2: Chứng minh rằng nếu 1 tam giác vuông có 1 góc nhọn bằng 30 độ thì cạnh góc vuông đối diện với nó bằng nửa cạnh huyền?
a) Chứng minh rằng trong một tam giác, một góc sẽ là nhọn, vuông hay tù tùy theo cạnh đối diện với góc đó nhỏ hơn hay bằng hay lớn hơn hai lần đường trung tuyến kẻ tới cạnh đó
b) cho một tam giác có độ dài các cạnh là a,b,c đồng thời a-b=b-c. Điểm M là giao điểm của hai trung tuyến, P là giao điểm của các đường phân giác của góc trong tam giác đã cho. Chứng minh rằng MP song song với cạnh có độ dài bằng b
1. Chứng minh trong một tam giác, cạnh đối diện với góc lớn hơn thì lớn hơn
2. Cho tam giác ABC có AB<AC, M là trung điểm của BC
a) CM: góc AMB< góc AMC
b) CM Góc BAM> góc CAM
c) Trên đoạn thẳng AM lấy điểm E tùy ý. CM EB<EC
Cho tam giác ABC (có AB lớn hơn AC) M là trung điểm của BC đường thẳng vuông góc với tia phân giác của góc A tại M cắt cạnh AB; AC lần lượt tại E và F chứng minh
a) EH=HF
B)\(2\widehat{BME}=\widehat{ACB}-\widehat{B}\)
c) \(\frac{FE^2}{4}+AH^2=AE^2\)
d) BE=CF
Cho tam giác ABC (có AB lớn hơn AC) M là trung điểm của BC đường thẳng vuông góc với tia phân giác của góc A tại M cắt cạnh AB; AC lần lượt tại E và F chứng minh
a) EH=HF
B\(2\widehat{BMe}=\widehat{ACB}-\widehat{B}\)
c)\(\frac{FE^2}{4}+AH^2=AE^2\)
d) BE=CF