Sửa đề: (x+y)(x+y+2)-2(x+1)(y+1)+2-x^2-y^2
=(x+y)^2+2(x+y)-x^2-y^2-2(xy+x+y+1)+2
=2xy+2(x+y)-2xy-2x-2y-2+2
=2(x+y)-2(x+y)-2+2
=0
=>Đẳng thức được chứng minh
Sửa đề: (x+y)(x+y+2)-2(x+1)(y+1)+2-x^2-y^2
=(x+y)^2+2(x+y)-x^2-y^2-2(xy+x+y+1)+2
=2xy+2(x+y)-2xy-2x-2y-2+2
=2(x+y)-2(x+y)-2+2
=0
=>Đẳng thức được chứng minh
chứng minh đẳng thức sau: (x+y)(x+y+z)-2(x-1)(y+1)+2=x^2+y^2
Cho x,y,z chứng minh bất đẳng thức
X/x^2+y^2 +y/y^2+z^2 +z/x^2+z^2 <_ 1/2(1/x+1/y+1/z)
chứng minh đẳng thức sau: (x+y)(x+y+z)-2(x-1)(y+1)+2=x^2+y^2
chứng minh bất đẳng thức x^2*(1+y^2)+y^2*(1+z^2)+z^2*(x+x^2)> hoặc bằng 6xyz
thực hiện phép tính
1/x^2+2 +1/x^2+3x+2 +1/x^2+5x+6 +1/x^2+7x+12 +x^2+9x+20
chứng minh hằng đẳng thức
y-z/(x-y)(x-z) +z-x/(y-z)(y-x) +x-y/(z-x)(z-y) =2/x-y +2/y-z +2/z-x
thực hiện phép tính
1/x^2+2 +1/x^2+3x+2 +1/x^2+5x+6 +1/x^2+7x+12 +x^2+9x+20
chứng minh hàng đẳng thức
y-z/(x-y)(x-z) +z-x/(y-z)(y-x) +x-y/(z-x)(z-y) =2/x-y +2/y-z +2/z-x
1) Tìm x biết: 5(x^2-1)+x(1-5x)= x-2
2) Chứng minh các đẳng thức sau:
a) (x+y+z)^3 = x^3+y^3+z^3+3(x+y)(y+z)(z+x)
b) x^2n+1 +y^2n+1 = (x+y)(x^2n-x^2n-1 y+x^2n-2 y^2- ...+x^2 y^2n-2 -xy^2n-1 +y^2n)
Chứng minh các đẳng thức sau:
a) (x-1) (x^2 + x+ 1) = x^3 -1
b) (x^3+x^2y + xy^2 + y^3) (x-y) = x^4 - y^4
c) (x+y+z)^2 = x^2 + y^2 + z^2 + 2xy + 2 yz + 2zx
1.Tính:
\(x:\frac{x-1}{2}-\frac{\left(x-1\right)\left(x^2+4x+1\right)}{2x^2+2x}.\frac{-4x}{\left(x-1\right)^2}-\frac{4x^2}{x^2-1}\)
2.Chứng minh đẳng thức sau( giả sử đẳng thức có nghĩa):
\(\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}+\frac{x-y}{\left(z-x\right)\left(z-y\right)}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)
Các bạn giúp mình với!