Ta thấy: 3x^2 lớn hơn hoặc bằng 0 với mọi x
6x lớn hơn hoặc bằng 0 với mọi x
=> 3x^2+6x+11 >11
=> Đa thức A(x) k có nghiệm
Vậy đa thức A(x) k có nghiệm.
\(A\left(x\right)=3x^2+6x+11\)
\(A\left(x\right)=2x^2+\left(x^2+6x+11\right)\)
\(A\left(x\right)=2x^2+\left(x^2+3x+3x+3^2\right)+2\)
\(A\left(x\right)=2x^2+x\left(x+3\right)+3\left(x+3\right)+2\)
\(A\left(x\right)=2x^2+\left(x+3\right)\left(x+3\right)+2\)
\(A\left(x\right)=2x^2+\left(x+3\right)^2+2\)
Có \(2x^2\ge0\)và \(\left(x+3\right)^2\ge0\)
=> \(2x^2+\left(x+3\right)^2\ge0\)
=> \(2x^2+\left(x+3\right)^2+2\ge2\)
=> \(2x^2+\left(x+3\right)^2+2\ne0\)
=> \(A\left(x\right)\ne0\)
Vậy đa thức \(A\left(x\right)\)không có nghiệm
\(A\left(x\right)=3x^2+6x+3+8=3\left(x^2+2x+1\right)+8=3\left(x+1\right)^2+8\)
vì \(\left(x+1\right)^2>=0\Rightarrow3\left(x+1\right)^2>=0;8>0\Rightarrow3\left(x+1\right)^2+8>0\)
\(\Rightarrow A\left(x\right)=3x^2+6x+11>0\Rightarrow\)đpcm
A(x)=3x2+6x+11
=3x2+3x+3x+3+8
=(3x2+3x)+(3x+3)+8
=3x(x+1)+3(x+1)+8
=(x+1)(3x+3)+8
=(x+1).3(x+1)+8
=3.(x+1)2+8
Ta có:3.(x+1)2>0,\(\forall x\), 8>0
=>3.(x+1)2+8>0\(\forall x\)=>A(x)>0
Vậy đa thức A(x) vô nghiệm