Vì a,b,c là độ dài 3 cạnh 1 tam giác nên:
\(a< b+c\Rightarrow a^2< ab+ac\)
Tương tự:
\(b^2< ab+bc;c^2< ac+bc\)
\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\left(đpcm\right)\)
Vì a,b,c là độ dài 3 cạnh 1 tam giác nên:
\(a< b+c\Rightarrow a^2< ab+ac\)
Tương tự:
\(b^2< ab+bc;c^2< ac+bc\)
\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\left(đpcm\right)\)
cho a,b,c là độ dài 3 cạnh của tam giác , chứng minh :
a3+b3+c3+2abc < a(b2+c2)+b(a2+c2)+c(a2+b2) < a3+b3+c3+3abc
mình cần gấp lắm , mn giúp mình với
a,Chứng minh bđt:
1,(a-1)(a-3)(a-4)(a-6)+9 ≥ 0
2,a2/b+c-a+b2/c+a-b+c2/a+b-c ≥ a+b+c (a,b,c là độ dài 3 cạnh tam giác)
b,Cho a2-4a+1=0.Tính giá trị của biểu thức A=a4+a2+1/a2
c,Cho a,b,c thỏa mãn 1/a+1/b+1/c=1/a+b+c.Tính giá trị của biểu thức M=(a5+b5)(b7+c7)(c2013+a2013)
cho a,b,c là độ dài 3 cạnh tam giác.
a)a2/b2+b2/a2≥ a/b+b/a
b)a2/b+b2/a+c2/a≥ a+b+c
c)a2/(b+c)+b2/(a+c)+c2/(a+b)≥ (a+b+c)/2
Cho tam giác ABC có BC = a, AC = b, AB = c và a2 = bc. Chứng minh rằng tam giác ABC đồng dạng với tam giác có độ dài các cạnh bằng độ dài ba đường cao của tam giác ABC.
gọi S là diện tích tứ giác ABCD có độ dài các cạnh là a,b,c,d .
Chứng minh rằng : S ≤( a2+b2+c2+d2 )/4
cho a,b,c là cạnh của 1 tam giác có chu vi =1.Chứng minh rằng: a2+b2+c2+4abc≤\(\dfrac{1}{2}\)
chứng minh: a2+b2+c2\(\ge\)ab+bc+ca với mọi a,b,c
Bài 1. Cho a2 + b2 + c2 = ab + bc + ca. Chứng minh rằng a = b =c.
Bài 1. Cho a2 + b2 + c2 = ab + bc + ca. Chứng minh rằng a = b =c.