Cho x,y,z chứng minh bất đẳng thức
X/x^2+y^2 +y/y^2+z^2 +z/x^2+z^2 <_ 1/2(1/x+1/y+1/z)
Chứng minh các bất đẳng thức: x^2 + y^2 +1 lớn hơn hoặc bằng xy + x + y
chứng minh đẳng thức (x+y)(x+y+z)-2(x+1)(y+1)+2=x^2+y^2
Chứng minh bất đẳng thức sau:
\(x^2+y^2+z^2+3\ge2\times\left(x+y+z\right)\)
chứng minh đẳng thức sau: (x+y)(x+y+z)-2(x-1)(y+1)+2=x^2+y^2
thực hiện phép tính
1/x^2+2 +1/x^2+3x+2 +1/x^2+5x+6 +1/x^2+7x+12 +x^2+9x+20
chứng minh hằng đẳng thức
y-z/(x-y)(x-z) +z-x/(y-z)(y-x) +x-y/(z-x)(z-y) =2/x-y +2/y-z +2/z-x
chứng minh đẳng thức sau: (x+y)(x+y+z)-2(x-1)(y+1)+2=x^2+y^2
thực hiện phép tính
1/x^2+2 +1/x^2+3x+2 +1/x^2+5x+6 +1/x^2+7x+12 +x^2+9x+20
chứng minh hàng đẳng thức
y-z/(x-y)(x-z) +z-x/(y-z)(y-x) +x-y/(z-x)(z-y) =2/x-y +2/y-z +2/z-x
Chứng minh đẳng thức
3(x^2+y^2+z^2)-(x-y)^2-(y-z)^2-(z-x)^2=(x+y+z)^2