Ta có:
\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2< \left(1+1\right)\left(n+a+n-a\right)=4n\)
\(\Rightarrow\sqrt{n+a}+\sqrt{n-a}< \sqrt{4n}=2\sqrt{n}\)
cm thì xong r` mà BĐT trên thì + biểu thức dưới là - là sao ??
Ta có:
\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2< \left(1+1\right)\left(n+a+n-a\right)=4n\)
\(\Rightarrow\sqrt{n+a}+\sqrt{n-a}< \sqrt{4n}=2\sqrt{n}\)
cm thì xong r` mà BĐT trên thì + biểu thức dưới là - là sao ??
Chứng minh bất đẳng thức
\(\sqrt{n+a}+\sqrt{n-a}< 2\sqrt{n}\)với \(0< |a|\le n\)
áp dụng(không dùng máy tính hoặc bảng số) chứng minh rằng
\(\sqrt{101}-\sqrt{99}>0,1\)
a) cho a,b,c thỏa mãn a > c và b > c > 0. tìm số n nhỏ nhất để có bất đẳng thức sau :
\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le n\sqrt{ab}\)
b) CMR với mọi số nguyên dương n
\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n}\le n\sqrt{\frac{n+1}{2}}\)
với n>0 chứng minh bất đẳng thức sau
\(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}< \frac{1}{2\sqrt{n}}\)
Áp dụng \(2\sqrt{n}>\sqrt{n-a}+\sqrt{n+a}\) (với 0< |a|\(\le\) n) để so sánh \(\sqrt{101}-\sqrt{99}\) với \(0,1\)
Chứng minh bất đẳng thức
Với n thuộc N, chứng minh \(\sqrt{n+1}-\sqrt{n}>\frac{1}{2\sqrt{n+1}}\)
Sử dụng kết quả trên, chứng minh: \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}< 2.\sqrt{2012}\)
Chứng minh \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{2n-1}{2n}< \frac{1}{\sqrt{2n+1}}\)với n thuộc N*
Chứng minh đẳng thức:
a) \(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}=\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
( với a > hoặc bằng 0; b > hoặc bằng 0; a khác b )
Chứng minh đẳng thức sau:
\(\frac{a+\sqrt{2+\sqrt{5}}.\sqrt{\sqrt{9-4\sqrt{5}}}}{\sqrt[3]{2-\sqrt{5}}.\sqrt[3]{\sqrt{9+4\sqrt{5}}-\sqrt[3]{a^2}}+\sqrt[3]{a}}=-\sqrt[3]{a-1}\)
Chứng minh bất đẳng thức sau:
\(\left(\sqrt[3]{\sqrt{9+4\sqrt{5}}+\sqrt[3]{2+\sqrt{5}}}\right).\sqrt[3]{\sqrt{5-2}}-2,1< 0\)
Chứng minh bất đẳng thức sau với mọi n nguyên dương:
\(\sqrt[3]{\left(n+1\right)^2}-\sqrt[3]{n^2}< \frac{2}{3\sqrt[3]{n}}< \sqrt[3]{n^2}-\sqrt[3]{\left(n-1\right)^2}\)
Chứng minh bất đẳng thức sau với mọi n nguyên dương:
\(\sqrt[3]{\left(n+1\right)^2}-\sqrt[3]{n^2}< \frac{2}{3\sqrt[3]{n}}< \sqrt[3]{n^2}-\sqrt[3]{\left(n-1\right)^2}\)