Ta có BĐT cô si:\(a+b\ge2\sqrt{ab}\)(1)
Mặt khác a,b là các số âm nên a+b<0 mà \(2\sqrt{ab}>0\)
\(\Rightarrow a+b< 2\sqrt{ab}\left(2\right)\)
Từ (1) và (2) suy ra vô lý
vậy...............
Ta có BĐT cô si:\(a+b\ge2\sqrt{ab}\)(1)
Mặt khác a,b là các số âm nên a+b<0 mà \(2\sqrt{ab}>0\)
\(\Rightarrow a+b< 2\sqrt{ab}\left(2\right)\)
Từ (1) và (2) suy ra vô lý
vậy...............
Cách chứng minh bất đẳng thức Cô- si đơn giản nhất là gì?
\(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\ge a+b+c.\left(a,b,c>0\right)\)
CHỨNG MINH THEO BẤT ĐẲNG THỨC CÔ-SI GIÙM MIK VỚI!!!!
Dự đoán kết quả: Nhân cả hai vế của bất đẳng thức -2 < 3 với số c âm thì ta được bất đẳng thức nào?
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\left(a,b,c>0\right)\)
CHỨNG MINH THEO BẤT ĐẲNG THỨC CÔ-SI GIÙM MIK VỚI!!!
tìm 1 số bài toan áp dụng bất đẳng thức cô si và bun hia cốp ki
chứng minh bất đẳng thức:.1/a+1/b+1/c>=9/(a+b+c)
Ko áp dụng bđt cô-si có làm đc ko mn (ko giải cách lớp 9 nha). Ai có câu trả lời chính xác mình cho 3 tk.
chứng minh bất đẳng thức sau với a,b,c,d là các số không âm
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
CM: \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\) với a, b > 0.
...
Làm ơn ạ, lớp 8 chưa học bất đẳng thức Cô-si =(((
tìm giá trị nhỏ nhất. áp dụng bất đẳng thức cô-si
\(\dfrac{x^2}{x+3}\) ;\(\dfrac{x^2}{x-2}\)