Ta có:
(a+b+c)2 >_0 Va,b,c
\(\Leftrightarrow\) a2+b2+c2+2ab+2ac+2bc>_0
\(\Leftrightarrow\) a2+b2+c2>_2ab+2ac+2bc
\(\Leftrightarrow\)a2+b2+c2>_2(ab+ac+bc)
Ta có:
(a+b+c)2 >_0 Va,b,c
\(\Leftrightarrow\) a2+b2+c2+2ab+2ac+2bc>_0
\(\Leftrightarrow\) a2+b2+c2>_2ab+2ac+2bc
\(\Leftrightarrow\)a2+b2+c2>_2(ab+ac+bc)
Chứng minh rằng
(a2+b2+c2)-(a2-b2-c2)2=4a2(b2+c2)
cho a,b,c là độ dài 3 cạnh của tam giác , chứng minh :
a3+b3+c3+2abc < a(b2+c2)+b(a2+c2)+c(a2+b2) < a3+b3+c3+3abc
mình cần gấp lắm , mn giúp mình với
Cho a2+b2+c2=ab+bc+ca. Chứng minh rằng a=b=c
Chứng minh rằng: a2+b2+c2+d2+e2≥a(b+c+d+e).
Cho a, b, c thỏa mãn: 0 < a < 1 ; 0 < b < 1 ; 0 < c < 1 v à a + b + c = 2 . Chứng minh: a 2 + b 2 + c 2 < 2
Cho a + b + c = 0. Chứng minh : (a2 + b2 + c2 )/2 * (a3 + b3 + c3 )/3 = (a5 + b5 + c5 )/5
chứng minh: a2+b2+c2\(\ge\)ab+bc+ca với mọi a,b,c
cho a,b,c là độ dài 3 cạnh tam giác.
a)a2/b2+b2/a2≥ a/b+b/a
b)a2/b+b2/a+c2/a≥ a+b+c
c)a2/(b+c)+b2/(a+c)+c2/(a+b)≥ (a+b+c)/2
Bài 1. Cho a2 + b2 + c2 = ab + bc + ca. Chứng minh rằng a = b =c.