Cho a,b∈∈ N va 2a+b chia het cho 7 CM 3a2+10ab-8b2 chia het cho 49
cho a , b thuộc N .Chứng minh 3a + b chia hết cho 7 chỉ khi 5a^2 + 15ab - b^2 chia hết cho 49
7. Chứng minh rằng với mọi số tự nhiên lẻ n:
n2+ 4n + 8 chia hết cho 8
n3+ 3n2- n - 3 chia hết cho 48
8. Tìm tất cả các số tự nhiên n để :
n4+ 4 là số nguyên tố
n1994+ n1993+ 1 là số nguyên tố
Chứng minh:
a) 24n -1 chia hết cho 15 với mọi n thuộc N
b) 3663 -1 chia hết cho 7 và không chia hết cho 37
c) n4 -10n2 +9 chia hết cho 384 với mọi n lẻ, n thuộc Z
d) a3 -a chia hết cho 3
e) a7 -a chia hết cho 7
Chứng minh rằng \(n^4+7\left(7+2n^2\right)\) chia hết cho 64 với mọi n là số lẻ.
1. Chứng minh:
a) (a2-1) chia hết cho 24 ( với a là số ntố lớn hơn 3)
b) (a7-a) chia hết cho 7 ( a thuộc Z)
Chứng minh với mọi n thuộc Z thì :
n^5 - n chia hết cho 5
n^7 - n chia hết cho 7
n^3 - 3n^2 - n + 3 chia hết cho 48 ( n lẻ )
Chứng minh \(5a^2+15ab-b^2\) chia hết cho 49 thì 3a+b chia hết cho 7 với a,b nguyên
Baif 1 CHứng minh rằng A= \(7^{7^{7^7}}-7^{7^7}\)chia hết cho 100.
Bài 2
a, Số A=\(2^{2^{2n+1}}+3\)là số nguyên hay hợp số
b,A= \(3^{2^{4n+1}}+2\){n thuộc N sao} đều không phải số nguyên tố
Bài 3
CHứng minh rằng với mọi số tự nhiên n ta đều có \(6^{2n}+19^n-2^{n+1}⋮17\)
Bài 4 Chứng minh rằng:
a,A=\(220^{119^{69}}+119^{69^{220}}+69^{220^{119}}⋮102\)
b,B=\(1890^{1930}+1945^{1975}+1⋮7\)
Bài 5 Cho a,b là các số nguyên. Chứng minh rằng:
2a+11b chia hết cho 19\(\Leftrightarrow\)5a+18b chia hết cho 19
Bạn nào làm được câu nào thì cứ làm chứ không nhất thiết phải làm hết nha
MOng mọi người giúp đỡ mình nhanh nha