Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đào Anh Thư ^_~

Chứng minh: 

2+22+23+24+25+26+.......+259+260 chia hết cho 3

Trịnh Minh Hoàng
30 tháng 12 2024 lúc 21:19

`2 + 2^2 + 2^3 + 2^4  +2^5 + 2^6 + ... + 2^59 + 2^60`

`= (2 + 2^2) + (2^3 + 2^4) + ... + (2^59 + 2^60)`

`= 1 . (2 + 2^2) + 2^2 . (2 + 2^2) + ... + 2^58 . (2 + 2^2)`

`= 1 . 6 + 2^2 . 6 + ... + 2^58 . 6`

`= 6 . (1 + 2^2  +... + 2^58)`

`= 2 . 3 . (1 + 2^2 + ... + 2^58)\vdots 3 (đpcm)`

456
30 tháng 12 2024 lúc 21:20

`2 + 2^2 + 2^3 + 2^4 + .. + 2^{59} + 2^{60}`

Đặt biểu thức trên là `A` , ta có :

`A = (2+2^2) + (2^3 + 2^4) + ... + (2^{59} + 2^{60}) vdots 3`

`A = 1 . (2+4) + 2^2 . (2 + 4) + ... + 2^{58} . (2+4) vdots 3`

`A = (1+2^2 + ... + 2^{58}) . 6 vdots 3`

Vì `6 vdots 3` nên

`=> A vdots 3`


Các câu hỏi tương tự
Rosie
Xem chi tiết
Siêu Xe
Xem chi tiết
Trúc Thanh
Xem chi tiết
Trần Bảo Trang
Xem chi tiết
nguyễn tiến hoàng
Xem chi tiết
Nguyễn Song Thảo Linh
Xem chi tiết
nguyen thanh trung
Xem chi tiết
Trần Minh Hạnh 6/5
Xem chi tiết
Lê Trọng Quý
Xem chi tiết
Phan Lâm Thanh Trúc
Xem chi tiết