Ta có : 2^101+2^102+2^103=2^98x2^3+2^99x2^3+2^100x2^3=(2^98+2^99+2^100)x2^3 chia hết cho 2^98+2^99+2^100.
Ta có : 2^101+2^102+2^103=2^98x2^3+2^99x2^3+2^100x2^3=(2^98+2^99+2^100)x2^3 chia hết cho 2^98+2^99+2^100.
Cho biểu thức A = 1 + 21 + 22 + 23 +...+ 2100 + 2101 .Chứng minh A chia hết cho 7
Cho A=2100-298+296-294+…24-22 . Chứng minh A chia hết cho 4
a, A= 2100 - 299 - 298 - 297 - ... - 2 -
Thu gọn
2100-299-298-...-2-1
CMR :
2100 - 299 + 298 - 297 + ...... + 24 - 23 + 22 ⋮ 12
Chứng tỏ 6^300+6^299+6^298 chia hết cho 43.
A=2100-299+298-297+...-23+22-2+1
HELP ME
Cho : B = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - 11 -12 + ... + 298 - 299 - 300 + 301 + 302
Chứng minh rằng B chia hết cho 3
Chứng tỏ rằng:
a, 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 chia hết cho 31
b, 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126
chứng tỏ rằng:
a) 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 chia hết cho 31
b) 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126