CÂU 6 : Chọn khẳng định đúng
Cho đường tròn ( I ) nội tiếp tam giác ABC. Tâm I của đường tròn này là :
A. Giao điểm của các đg cao của tam giác
B. Giao điểm các đg phân giác các góc của tam giác
C. Giao điểm các đường trung trực của tam giác
D. Giao điểm các đường trung tuyến của tam giác
chỉ cần đáp án ko cần giải chi tiết
Mỗi câu sau đây đúng hay sai?
a) Mỗi tam giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp
b) Mỗi tứ giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp
c) Giao điểm ba đường trung tuyến của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy
d) Giao điểm ba đường trung trực của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy.
e) Giao điểm ba đường phân giác trong của một tam giác là tâm đường tròn nội tiếp tam giác ấy.
f) Giao điểm ba đường cao của một tam giác là tâm đường tròn nội tiếp tam giác ấy.
g) Tứ giác có tổng độ dài các cặp cạnh đối nhau bằng nhau thì ngoại tiếp được đường tròn
h) Tứ giác có tổng số đo các cặp góc (trong) đối nhau bằng nhau thì nội tiếp được đường tròn.
i) Đường tròn tiếp xúc với các đường thẳng chứa các cạnh của tam giác là đường tròn nội tiếp tam giác đó.
Cho tam giác ABC nội tiếp đường tròn tâm O. Các tia phân giác của các góc A và B cắt nhau ở I và cắt đường tròn theo thứ tự ở D và E. Chứng minh:
a, Tam giác BDI là tam giác cân
b, DE là đường trung trực của IC
c, IF và BC song song, trong đó F là giao điểm của DE và AC
cho tam giác ABC cân tại A, I là giao điểm các đường phân giác trong tam giác.
a, CM: AC là tiếp tuyến của đường tròn tâm O ngoại tiếp tam giác BIC.
b, gọi H là trung điểm của BC. IK là đường kính của đường tròn tâm O. CMR: AI.HK=AK.HI
Cho tam giác ABC nội tiếp đường tròn (O), góc A < 90°. Các đường phân giác trong cắt nhau tại I. Các đường thẳng AI, BI, CI lần lượt cắt đường tròn tại M, N, P. Chứng minh:
a) Tam giác NIC cân tại N
b) I là trực tâm tam giác MNP
c) Gọi E là giao điểm của MN và AC, F là giao điểm của PM và AB. Chứng minh 3 điểm E, I, F thẳng hàng
d) Gọi K là trung điểm BC, giả sử BI ⊥ IK, BI = 2IK. Tính góc A của tam giác ABC
Cho tam giác ABC nội tiếp đường tròn tâm O và điểm I là tâm đường tròn nội tiếp tam giác.Các điểm A', B', C' lần lượt là các giao điểm của AI,BI,CI với (O). Trên cung nhỏ AC của (O) không chứa điểm B lấy điểm D bất kì. Gọi E là giao điểm của DC' và AA', F là giao điểm củaDA' và CC'.CMR
a) I là trực tâm của tam giác A'B'C'
b) Tứ giác DEIF nội tiếp
c) Tâm đường tròn ngoại tiếp tam giác DEF luôn thuộc 1 đường thẳng cố định
Câu 38: Tâm đường tròn nội tiếp tam giác là giao điểm của ba đường
A. Phân giác B. Trung trực
C. Đường cao D. Đường trung tuyến
cho tam giác ABC nội tiếp đường tròn tâm O đường cao AK, H là trực tâm của tam giác, I là trung điểm cạnh AC, phân giác của góc A cắt đường tròn tại M.Chứng minh a) đường thẳng OM đi qua điểm M của BC b)góc KAM= góc MAO c) tam giác AHB đồng dạng tam giác NOI và AH=2ON
1) cho tam giác vuông ABC đường cao AH .gọi AD ;AE là phân giác các góc BAH và góc CAH .chứng minh rằng đường tròn nội tiếp tam giác BCA trùng với đường tròn ngoại tiếp tam giác ADE
2)cho tam giác ABC vuông tại A;gọi I là tâm đường tròn nội tiếp tam giác ABC ;các tiếp điểm trên BC;CA;AB lần lượt là D,E,F.gọi M là trung điểm của AC ,đường thẳng MI cắt các cạnh AB tại N ,đường thẳng DF cắt đường cao AH tại P .cmr tam giác APN cân
Cho đường tròn (O; R), tam giác ABC nội tiếp đường tròn. Gọi BM, CN lần lượt là các đường cao của tam giác ABC, I là trung điểm của BC.
a) Chứng minh bốn điểm B, N, M, C cùng thuộc một đường tròn. Xác định tâm của đường tròn đó.
b) Kẻ tia OI cắt đường tròn (O) tại E. Chứng minh tam giác BEC cân.
c) Giả sử R = 4 c m , B C = 4 3 c m , tính số đo góc BOC.