Hoành độ giao điểm của (P) và (d) là nghiệm của PT:
\(x^2=2x+m^2-2m\)
\(\Leftrightarrow x^2-2x-\left(m^2-2m\right)=0\)
\(\Delta^'=\left(-1\right)^2-1\cdot\left(-m^2+2m\right)=m^2-2m+1=\left(m-1\right)^2\ge0\left(\forall m\right)\)
=> PT luôn có nghiệm với mọi m
Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2+2m\end{cases}}\)
Ta có: \(x_1^2+2x_2=3m\Leftrightarrow x_1^2+\left(x_1+x_2\right)x_2=3m\)
\(\Leftrightarrow\left(x_1^2+x_2^2\right)+x_1x_2=3m\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=3m\)
\(\Leftrightarrow2^2+m^2-2m=3m\)
\(\Leftrightarrow m^2-5m+4=0\)
\(\Leftrightarrow\left(m-1\right)\left(m-4\right)=0\Rightarrow\orbr{\begin{cases}m=1\\m=4\end{cases}\left(tm\right)}\)
Vậy \(m\in\left\{1;4\right\}\)