đặt \(k=\frac{x}{y}=\frac{z}{t}=\frac{a}{b}\Rightarrow x=yk,z=tk,a=bk\)
\(A=\frac{yk-3tk+2bk}{y-3t+2b}=\frac{k.\left(y-3t+2b\right)}{y-3t+2b}=k\)
Đặt \(\frac{x}{y}=\frac{z}{t}=\frac{a}{b}=k\)
\(\Rightarrow x=yk;z=tk;a=bk\)
Do đó : \(A=\frac{x-3z+2a}{y-3t+2b}=\frac{yk-3tk+2bk}{y-3t+2b}\)
\(=\frac{k\left(y-3t+2b\right)}{y-3t+2b}=k\)
Ta có: \(\frac{x}{y}=\frac{z}{t}=\frac{a}{b}=\frac{3z}{3t}=\frac{2a}{2b}\)
Từ đây,áp dụng dãy tỉ số bằng nhau,ta có: \(\frac{x}{y}=\frac{3z}{3t}=\frac{2a}{2b}=\frac{x-3z+2a}{y-3t+2b}\)
\(\frac{x}{y}=\frac{z}{t}=\frac{a}{b}=\frac{3z}{3t}=\frac{2a}{2b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{y}=\frac{3z}{3t}=\frac{2a}{2b}=\frac{x-3z+2a}{y-3t+2b}\)