Lời giải bạn Thanh đúng rồi, mình vẽ hình và trình bày lại cho rõ hơn như sau:
a) Do D và M đối xứng qua AB nên AD = AM
E và M đối xứng qua AC nên AE = AM
=> AD = AE (vì cùng bằng AM)
b) Theo câu a) thì AD = AE nên tam giác ADE cân => \(\widehat{ADE}=\widehat{AED}\) (1)
tam giác AID = tam giác AIM t(trường hợp CGC) vì có AI chung, AD = AM, \(\widehat{DAI}=\widehat{IAM}\)
=> \(\widehat{ADI}=\widehat{AMI}\) (2)
Tương tự: \(\widehat{AEK}=\widehat{AMK}\) (3)
Từ (1), (2) và (3) suy ra \(\widehat{AMI}=\widehat{AMK}\) +> AM là phân giác góc \(\widehat{IMK}\)
c) Ta có: \(\widehat{DAB}=\widehat{MAB}\) , \(\widehat{EAC}=\widehat{MAC}\) (do tính chất đối xứng)
=> \(\widehat{DAE}=2.\widehat{BAC}\) là đại lượng không đổi khi M di chuyển trên BC.
=> \(DE^2=AD^2+AE^2-2.AD.AE.\cos\widehat{DAE}\)
Mà AD = AE = AM
=> \(DE^2=AM^2+AM^2-2.AM.AM.\cos\left(2.\widehat{BAC}\right)\)
\(=2.AM^2\left[1-\cos2\widehat{BAC}\right]\)
=> DE nhỏ nhất khi AM nhỏ nhất => M là chân đường cao hạ từ A xuống BC
BAI NAY DE QUA NHO K DUNG NHA !
cau a
vi D,M doi xung nen tam giac ADM co AD=AM
cmtt voi tam giac AME nen co AM=AE
tu do co AD=AE
cau b
cm tam AIK=tam giac AIM do chung AD;AD=AM;DAI=MAI
nen goc AID= goc AMI
CMTT VOI tam giacAKM va AKE CO AMK=AEK
co AD = AE NEN TAM GIAC ADE CAN NE ADI=AEK
TU LAM NOT CAU C GOI Y AM LA DUONG CAO THI DE NHO NHAT
Bạn ơi, cái này nâng cao lớp 7 đã học rồi, bạn làm ơn giải dùm mình cách lớp 7 đc ko?? Mình ko biết cos là gì hết 😞