Cho tam giác ABC vuông tại A có , đường cao AH. Trên tia đối của tia HB lấy điểm M sao cho HM = HB.
a) Chứng minh rằng HB < HC.
b) Chứng minh rằng AHB = AHM. Từ đó suy ra ABM là tam giác đều.
c) Gọi N là trung điểm của AC và O là giao điểm của AM và BN. Biết AB = 4 cm, tính độ dài đoạn thẳng AO.
Bài 4. (2,5 điểm) Cho tam giác ABC vuông tại A có , đường cao AH. Trên tia đối của tia HB lấy điểm M sao cho HM = HB.
a) Chứng minh rằng HB < HC.
b) Chứng minh rằng AHB = AHM. Từ đó suy ra ABM là tam giác đều.
c) Gọi N là trung điểm của AC và O là giao điểm của AM và BN. Biết AB = 4 cm, tính độ dài đoạn thẳng AO.
Cho tam giác ABC vuông tại A. Có AB<AC. Từ A kẻ AH vuông góc với BC tại H
a). So sánh độ dài HB và HC
b) Trên tia HC lấy điểm I sao cho HB = HI. Chứng minh: Tam giác ABI là tam giác cân
c) Biết B =60° và điểm M thuộc tỉa đối của tia BA sao cho BM-BI Chứng minh:AC-MI
Bài 5. (3đ) Cho tam giác ABC vuông tại A. Có AB<AC. Từ A kẻ AH vuông góc với BC tại H
a) So sánh độ dài HB và HC
b) Trên tia HC lấy điểm I sao cho HB = HI. Chứng minh: Tam giác ABI là tam giác cân
c) Biết B = 60° và điểm M thuộc tia đối của tia BA sao cho BM=BỊ Chứng minh:
AC=MI
Cho tam giác ABC vuông tại A có AB<AC, đường cao AH. Trên tia HA lấy điểm P sao cho HP=HB và trên tia HC lấy điểm M sao cho HM=HA.
Chứng minh rằng
a)HB<HA<HC
b)P là trực tâm của tam giác ABM
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là trung điểm của HB, E là
trung điểm của HC, F là trung điểm của AH. Trên tia đối của tia DF lấy điểm K sao cho D là
trung điểm của KF
a) Chứng minh ΔDBK = ΔDHF, từ đó suy ra AH // BK
b) Chứng minh AB // FK
c) Chứng minh CF vuông góc với AD
d) Chứng minh BF vuông góc với AE
cho tam giác abc vuông tại a (ab<ac). đường cao ah trên tia đối của tia ahh lấy điển d sao cho hd=ah. trên tia hc lấy điểm m sao cho hm= hb
a, cmr ab=dm , ab//dm
b,am vuông góc với cd
cho tam giác abc vuông tại a (ab<ac),đường cao ah trên tia đối của ah lấy d sao cho hd=ah. trên tia hc lấy m sao cho hm=hb
a,cmr ab=dm,ab//dm
b,am vuông góc vs cd
Cho tam giác ABC vuông tại A, AB < AC, đường cao AH ( H thuộc BC). Trên tia tia đối của tia HA lấy M sao cho HM = HA. Trên tia đối của tia HB lấy D sao cho HD = HB
a) Chứng minh: tam giác AHB = tam giác MHD
b) Chứng minh: AB//MD; MD vuông góc AC
c) Gọi E là trung điểm của AB, F là trung điểm của MD. Chứng minh: E, H, F thẳng hàng