Cho I, O lần lượt là tâm đường tròn nội tiếp, tâm đường tròn ngoại tiếp tam giác ABC với \(\widehat{A}=60^o.\) Gọi H là giao điểm của các đường cao BB' và CC'. Chứng minh các điểm B, C, O, H, I cùng thuộc một đường tròn.
Cho hai đường tròn (O) và (O’) cắt nhau ở A và B. Kẻ tiếp tuyến chung CD của hai đường tròn, C∈ (O); D ∈ (O’). Gọi I là giao điểm của AB và CD. Gọi E là điểm đối xứng với B qua I. Chứng minh rằng: a) BCED là hình bình hành b) Bốn điểm A, C, E , D thuộc cùng một đường tròn
Bài 1: Cho nửa đường tròn tâm o đường kính AB. M,N di động trên nửa đường tròn sao cho M nằm trên cung AN và MN=R . Gọi I là giai điểm của AM và BN, K là giao điểm của AN và BM. Chứng minh
a) Điểm I thuộc 1 đường cố định
b) Điểm K thuộc 1 đường cố định
Bài 2:Cho tam giác ABC nội tiếp đường tròn tâm o. Tiếp tuyến của đường tròn ở B và C cắt nhau ở D. Qua D kẻ một cát tuyến cắt đường tròn ở E và F, cắt cạnh AC ở I. Cho biết EF // AB, chứng minh 4 điểm O,I,C,D cùng thuộc 1 đường tròn
Cho tam giác ABC vuông tại A ( có AB <AC ), đường cao AH . Trên tia AC lấy điểm D sao cho AD =AB . Trên tia HC lấy điểm E sao cho HE =AH a. Chứng minh: Bốn điểm A D E B thuộc cùng một đường tròn
cho tam giác đều ABC nội tiếp (O;R). Chứng minh với mọi điểm M nằm trong mặt phẳng tam giác ABC ta luôn có bất đẳng thức MA+MB\(\ge\)MC. Dấu "=" xảy ra khi nào?
Giúp mình với, cảm ơn mọi người nhiều!
Cho một điểm A cố định ở ngoài đường tròn tâm O bán kính R. Đường tròn tâm I di động qua A cắt (O) tại B và C. a) Đường thắng AB cắt đường tròn (O) tại E. Tiếp tuyến tại A của đường tròn (I) và tiếp tuyến tại E của đường tròn (O) cắt nhau tại F. Chứng minh A, C, E, F nằm trên một đường tròn.
b) Gọi M là giao điểm của đường thẳng BC và tiếp tuyến tại A của đường tròn (I). Chứng minh rằng điểm M luôn ở trên một đường thẳng cố định.
Cho hình thang ABCD (đáy nhỏ BC, đáy lớn AD), nội tiếp đường tròn (O). Các tiếp tuyến của (O) tại B và D cắt nhau ở K. Đường thẳng AB và CD cắt nhau tại I, BK và ID cắt nhau tại E
a) Chứng minh BIKD là tứ giác nọi tiếp
b) Chứng minh IK//BC
Cho đường tròn đường kính AB cố định, M là một điểm chạy trên đường tròn. Trên tia đối của tia MA lấy điểm I sao cho MI = 2MB.
a) Chứng minh \(\widehat{AIB}\) không đổi.
b) Tìm tập hợp các điểm I nói trên.
Cho đường tròn (O) và điểm M nằm ngoài (O). Từ M kẻ hai tiếp tuyến MA, MB đến (O) (A; B là tiếp điểm). Qua m kẻ cát tuyến MNP (MN<MP) đến (O). Gọi K là trung điểm của NP.
1) CMR: các điểm M, A, K, O, B cùng thuộc 1 đường tròn
2) Chứng minh ti KM là phân giác của góc AKB
Cho tam giác ABC vuông ở A có cạnh BC cố định , Gọi I là giao điểm của ba đường phân giác trong . Chứng minh 2 điểm nằm trên cung tròn chứa góc 155 độ dựng trên đoạn thẳng BC ?