Cho \(\left(x+y+z\right)\left(xy+yz+zx\right)=xyz\)
Chứng minh rằng \(x^{2015}+y^{2015}+z^{2015}=\left(x+y+z\right)^{2015}\)
Chứng minh (x+y+z)^2-x^2-y^2-z^2=2(xy+yz+zx)
2) cho xyz=2016
chứng minh rằng 2016x/xy+2016x+2016 + y/yz+y+2016 + z/xz+z+1 = 1
\(\dfrac{xyz-xy-yz-zx+x+y+z-1}{xyz+xy+yz-zx-x+y-z-1}\) với x = 5001;y=5002;z=5003
Cho x+y+z + 2 = xyz.
Chứng minh: \(x+y+z+6\ge2\left[\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right]\)
1) a) Cho (x+y+z)(xy+yz+zx)=xyz
C/m x2015+y2015+z2015=(x+y+z)2015
b)CM nếu x+y+z chia hết cho 6
A=(x+y)(y+z)(z+x)-2xyz chia hết cho 6
Cho các số x,y,z thỏa mãn:x2+y2+z2=xy+yz+zx và x2014+y2014+z2014=3. Tính giá trị cua biểu thức P=x25+y4+z2015
cho (x+y+z) (xy+yz+zx)=xyz .CMR:
x^2017+y^2017+z^2017= (x+y+z)^2017
chứng minh A=(xy+zx+1)/(xy+x+y+1)+(yz+zy+1)/(yz+y+z+1)+(zx+zx+1)/(zx+x+z+1) không thuộc x, y, z
cho (x + y + z)(xy + yz + zx)=xyz. Chứng minh rằng x2017 + y2017 + z2017 = (x + y +z)2017
THanks for yout help!!!!!!~