\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow\)\(x+y+z=\frac{xy+yz+xz}{xyz}\)
\(\Leftrightarrow\)\(x+y+z=xy+yz+xz\) (vì xyz = 1 )
Ta có: \(\left(xyz-1\right)+\left(x+y+z\right)-\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow\)\(\left(xyz-xy\right)-\left(xz-x\right)-\left(yz-y\right)+\left(z-1\right)=0\)
\(\Leftrightarrow\)\(xy\left(z-1\right)-x\left(z-1\right)-y\left(z-1\right)+\left(z-1\right)=0\)
\(\Leftrightarrow\)\(\left(z-1\right)\left(x-1\right)\left(y-1\right)=0\) (mk lm hơi tắt, thông cảm)
\(\Leftrightarrow\) \(x-1=0\) \(\Leftrightarrow\) \(x=1\)
hoặc \(y-1=0\) \(\Leftrightarrow\) \(y=1\)
hoặc \(z-1=0\) \(\Leftrightarrow\) \(z=1\)
Vậy....