Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
danh Vô

cho x,y,z>0

tìm GTNN của biểu thức   

\(\frac{\sqrt{x}}{\sqrt{y}+\sqrt{z}}+\frac{\sqrt{y}}{\sqrt{z}+\sqrt{x}}\)\(+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}}\)

Phùng Minh Quân
22 tháng 12 2018 lúc 21:00

Gọi \(T=...\)

\(T+3=\frac{\sqrt{x}}{\sqrt{y}+\sqrt{z}}+1+\frac{\sqrt{y}}{\sqrt{z}+\sqrt{x}}+1+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}}+1\)

\(T+3=\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{z}+\sqrt{x}}\right)\)

\(\ge\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right).\frac{\left(1+1+1\right)^2}{2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}=\frac{9}{2}\)\(\Rightarrow\)\(T\ge\frac{9}{2}-3=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)

... 

kudo shinichi
22 tháng 12 2018 lúc 21:11

Đặt \(\hept{\begin{cases}\sqrt{x}=a\\\sqrt{y}=b\\\sqrt{z}=c\end{cases}\left(a,b,c>0\right)}\)

Đặt \(P=\frac{\sqrt{x}}{\sqrt{y}+\sqrt{z}}+\frac{\sqrt{y}}{\sqrt{z}+\sqrt{x}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}}\)

\(\Rightarrow P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(\Rightarrow P+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\)

\(P+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\)

\(P+3=\frac{a}{b+c}+\frac{b+c}{b+c}+\frac{b}{c+a}+\frac{c+a}{c+a}+\frac{c}{a+b}+\frac{a+b}{a+b}\)

\(2\left(P+3\right)=2.\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

\(2\left(P+3\right)=\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

Áp dụng BĐT AM-GM ta có:

\(2\left(P+3\right)\ge3.\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.3.\sqrt[3]{\frac{1}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}}=9.\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.\frac{1}{\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=9\)

\(\left(\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ne0\right)\)

\(\Leftrightarrow P+3\ge4,5\)

\(\Leftrightarrow P\ge1,5\)

\(P=1,5\Leftrightarrow a=b=c\Leftrightarrow\sqrt{x}=\sqrt{y}=\sqrt{z}\Leftrightarrow x=y=z\)

Vậy \(P_{min}=1,5\Leftrightarrow x=y=z\)

kudo shinichi
22 tháng 12 2018 lúc 21:28

C2: Đặt \(\hept{\begin{cases}\sqrt{x}=a\\\sqrt{y}=b\\\sqrt{z}=c\end{cases}}\)

Đặt \(P=\frac{\sqrt{x}}{\sqrt{y}+\sqrt{z}}+\frac{\sqrt{y}}{\sqrt{x}+\sqrt{z}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}}\)

\(\Rightarrow P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+c}\)

\(P=\frac{a^2}{a\left(b+c\right)}+\frac{b^2}{\left(c+a\right)b}+\frac{c^2}{\left(a+b\right)c}\)

\(P=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ab}+\frac{c^2}{ac+bc}\)

Áp dụng BĐT Cauchy-schwarz ta có:

\(P\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

B tự c/m BĐT phụ \(ab+bc+ca\le\frac{1}{3}.\left(a+b+c\right)^2\)

\(\Rightarrow P\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{2.\frac{1}{3}\left(a+b+c\right)^2}=\frac{1}{\frac{2}{3}}=\frac{3}{2}=1,5\)

\(P=1,5\Leftrightarrow a=b=c\Leftrightarrow\sqrt{x}=\sqrt{y}=\sqrt{z}\Leftrightarrow x=y=z\)

Vậy \(P_{min}=1,5\Leftrightarrow x=y=z\)

tth_new
27 tháng 10 2019 lúc 9:43

Đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c>0\)

Đó là bđt Nesbitt!

Khách vãng lai đã xóa

Các câu hỏi tương tự
lý canh hy
Xem chi tiết
Chế Ngọc Thái
Xem chi tiết
Thân thi thu
Xem chi tiết
nguyen van bi
Xem chi tiết
Mai lê hà
Xem chi tiết
Marry
Xem chi tiết
Phạm Bá Nhật Khánh
Xem chi tiết
bui thai hoc
Xem chi tiết
Đặng Phương Nga
Xem chi tiết