\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)\left(x^2-xy+y^2+z^2-xz-yz\right)\)
=0
\(x+y+z=0\\ \Rightarrow x+y=-z\\ \Rightarrow\left(x+y\right)^3=\left(-z\right)^3\\ \Rightarrow x^3+3x^2y+3xy^2+y^3\\ \Rightarrow x^2+y^2+z^2=-3x^2y-3xy^2\\ \Rightarrow x^2+y^2+z^2=-3xy\left(x+y\right)\\ \Rightarrow x^2+y^2+z^2=-3xy\left(-z\right)=3xyz\\ \left(đpcm\right)\)